
Speed faults in computation by chemical
reaction networks?

Ho-Lin Chen1, Rachel Cummings2, David Doty2, and David Soloveichik3

1 National Taiwan University, Taipei, Taiwan holinc@gmail.com
2 California Institute of Technology, Pasadena, California, USA

rachelc@u.northwestern.edu,ddoty@caltech.edu
3 University of California, San Francisco, San Francisco, CA, USA

david.soloveichik@ucsf.edu

Abstract. Chemical reaction networks (CRNs) formally model chem-
istry in a well-mixed solution. Assuming a fixed molecular population size
and bimolecular reactions, CRNs are formally equivalent to population
protocols, a model of distributed computing introduced by Angluin, Asp-
nes, Diamadi, Fischer, and Peralta (PODC 2004). The challenge of fast
computation by CRNs (or population protocols) is to ensure that there
is never a bottleneck “slow” reaction that requires two molecules (agent
states) to react (communicate), both of which are present in low (O(1))
counts. It is known that CRNs can be fast in expectation by avoiding slow
reactions with high probability. However, states may be reachable (with
low probability) from which the correct answer may only be computed by
executing a slow reaction. We deem such an event a speed fault. We show
that the problems decidable by CRNs guaranteed to avoid speed faults
are precisely the detection problems: Boolean combinations of questions
of the form “is a certain species present or not?”. This implies, for in-
stance, that no speed fault free CRN could decide whether there are at
least two molecules of a certain species, although a CRN could decide
this in “fast” expected time — i.e. speed fault free CRNs “can’t count.”

1 Introduction

Understanding the principles of molecular computation is essential to making
sense of information processing in biological cellular regulatory networks. Fur-
ther, in engineering of life-like devices (e.g. “wet robots” that can patrol the
blood for cancer cells) we are rapidly approaching the point where we are lim-
ited by conceptual understanding: How molecular networks can be programmed

? The third, and fourth authors were supported by the Molecular Programming
Project under NSF grants 0832824 and 1317694, the first author was supposed by
NSC grant number 101-2221-E-002-122-MY3, the second author was supported by
NSF grants CCF-1049899 and CCF-1217770, the third author was supported by
a Computing Innovation Fellowship under NSF grant 1019343, NSF grants CCF-
1219274 and CCF-1162589, and the fourth author was supported by NIGMS Systems
Biology Center grant P50 GM081879.

to process information and carry out computation subject to the natural con-
straints of aqueous chemistry is still not well-understood.

A foundational model of chemistry commonly used in natural sciences is that
of chemical reaction networks (CRNs), i.e., (finite) sets of chemical reactions
such as A + B → A + C. Subject to discrete semantics (integer number of
molecules) the model corresponds to a continuous time, discrete state, Markov
process [12]. A state of the system is a vector of non-negative integers specifying
the molecular counts of the species (e.g., A, B, C), a reaction can occur only
when all its reactants are present, and transitions between states correspond to
reactions (i.e., when the above reaction occurs the count of B is decreased by
1 and the count of C increased by 1). The transition rate is proportional to
the product of the counts of the reactants. CRNs are widely used to describe
natural biochemical systems such as the intricate cellular regulatory networks
responsible for the information processing within cells. With recent advances
in synthetic biology, CRNs are a promising language for the design of artificial
biochemical networks. For example, the physical primitive of nucleic-acid strand
displacement cascades provides concrete chemical implementations of arbitrary
CRNs [4, 8, 16]. Thus, since in principle any CRN can be built, hypothetical
CRNs with interesting behaviors are becoming of more than theoretical interest.

The importance of the CRN model is underscored by the observation that
intimately related models repeatedly arise in theoretical computer science under
different guises: e.g. vector addition systems [13], Petri nets [14], population
protocols [1]. The connection to distributed computing models, in turn, resulted
in novel insights regarding natural cellular regulatory networks [5].

Parallelism is a basic attribute of chemistry, and one that is of central im-
portance in understanding molecular information processing. This kind of par-
allelism is both a blessing and a curse: it can be used to speed up computation,
but we must be careful to avoid “race conditions” (reactions happening in an
unintended order) which may lead to error.

Consider a very basic task: a chemical system (e.g. cell) responding to molec-
ular signals present in very small quantities. More specifically, say the compu-
tation is to produce at least one molecule of Y if and only if there is at least
one molecule of species A1 and at least one molecule of species A2. Consider the
strategy shown in Fig 1(b). Intuitively, this corresponds to having receptors F
that in order to activate need to bind both A1 and A2. By having n receptors
F we can increase the rate of the first reaction, but if there is only one molecule
of A1, there will be at most one molecule of F ′ and thus the second reaction
occurs at a rate independent of the amount of receptor. Thus this scheme is “not
parallelizeable”.4

4 Bimolecular reaction rates scale inversely with the total volume, and it is impossible
to fit arbitrarily many molecules in a fixed volume. While for large enough molecular
counts we will run into this finite density constraint, we study the scaling of speed
with molecular count before that point is reached. An alternate perspective is that
our task is to compute as quickly as possible in volume sufficient to allow molecules
of F to fill the volume with constant density [15].

a)
e)

b)
f)

c)

g)d)

parallelizable
determ

inistic parallelizable
determ

inistic
Y iff [at least 1 molecule of A1
and at least 1 molecule of A2]

Y iff [at least 2 molecules of A]

Fig. 1. Two molecular computation tasks: predicates
“Is there at least 1 molecule of A1 and at least one
molecule of A2?” (left), and “Are there at least 2
molecules of A?” (right). CRNs (a)-(d) compute the
first predicate (left), and CRNs (e)-(g) compute the
second (right). Parameter n is the initial amount of
F , or F1 and F2 species which help in the compu-
tation. Informally the parallelizeable CRNs are those
that produce the output faster with increasing n. De-
terministic CRNs are those that compute correctly no
matter what order the reactions happen to occur in.
Other strategies (not shown) involve producing Y but
consuming it if the predicate is not satisfied.

A better strategy is
to amplify the signal be-
fore taking the conjunc-
tion: e.g. Fig 1(c). Here the
receptors release A1 back
upon interacting with it,
and a single A1 can in-
teract with many recep-
tors (converting them from
F to F ′). Intuitively, the
more receptors F we have,
the faster we’ll get a large
number of F ′’s, and the
faster the Y will get pro-
duced via the second reac-
tion. More specifically, ob-
serve that starting with
n > 0 molecules of F ,
and a molecule of A1

and A2 each, the reach-
able states without Y are:
for 0 ≤ m ≤ n, ((n −
m) F, m F ′, 1 A1, 1 A2).
From any reachable state
without Y , we can reach Y
through a sequence of reac-
tion executions where one of the reactants is present in at least bn1/2c count,5

and under stochastic chemical kinetics, the expected time to traverse this path
is O(1/n1/2) — decreasing with n.6 Scheme Fig 1(d) is even faster: it can be
shown that from any reachable state, the expected time to produce Y scales as
O(log n/n).

Now consider a slightly different computational task: produce at least one
molecule of Y if and only if there are at least 2 molecules of species A. The
natural analog of Fig 1(b) fails to be deterministic: the reactions A + F →F ′,

5 If m < bn1/2c, execute the first reaction bn1/2c − m times (resulting in bn1/2c
molecules of F ′), and then execute the second reaction. If m ≥ bn1/2c, execute the
second reaction.

6 The rate of a bimolecular reaction is proportional to the product of the counts of the
reactants. Thus the expected time from the state with m < bn1/2c molecules of F ′

to reach the state with bn1/2c molecules of F ′ is proportional to
∑bn1/2c
i=m 1/(n− i) ≤

n1/2 · 1/(n− n1/2) = O(1/n1/2). Finally the rate of the second reaction when there
are bn1/2c molecules of F ′ is proportional to n1/2 and thus the expected time for it
to fire is O(1/n1/2) for a total expected time of O(1/n1/2). Note that power n1/2 was
chosen in the analysis to ensure the optimal tradeoff between the rates of individual
reaction executions and the total number of reaction executions.

A + F ′→Y suffer from a “race condition” where Y is never produced if both
molecules of A happen to react with F . This can be fixed by having the receptor
F bind A reversibly7 as in Fig. 1(f). However, this scheme is not parallelizeable
for the same reason as (b).

The natural analog of the parallelizeable reaction scheme Fig 1(c) will not
solve this task correctly at all: With reactions A+F →F ′+A, A+F ′→Y , even
a single molecule of A will always lead to a Y .

Also problematic is the scheme shown in Fig 1(g) based on (d). While it is
parallelizeable, it also suffers from a race condition that can result in an error.
If the two molecules of A happen to react with different receptor types (F1 and
F2) then Y will be produced. However, if both A’s react with the same receptor
type, Y will never be produced.

Informally, our main result is that no CRN is deterministic and parallelize-
able at the same time for the “2 A problem” (or any computation that involves
counting, rather than simply detecting the presence or absence of input species).
Thus deterministic and parallelizeable must be disjoint in Fig. 1(right). Unlike
the examples above, we allow a broader range of schemes that could produce
and consume Y repeatedly but eventually converge on the presence or absence
of Y as the output. In order to define “parallelizeable” formally, we introduce
the notion of a “speed fault”. A speed fault occurs if a state is reached such that
to stabilize to the correct output from that state requires using a bimolecular
reaction with both reactants bounded independently of n. Thus “deterministi-
cally parallelizeable” corresponds to speed fault free. Our main result is that the
problems decidable by speed fault free CRNs are precisely the detection prob-
lems: Boolean combinations of questions of the form “is a certain species present
or not?”. Thus speed fault free CRNs “can’t count.”

The current work stems from the desire to understand fast deterministic
computation in CRNs and population protocols. While sophisticated chemical
algorithms and protocols have been developed to compute a large class of func-
tions quickly and without error (see next section), most constructions are not
deterministically fast in the same strong sense as they are deterministic. Indeed,
deterministic computation is a worst case notion that intuitively ensures cor-
rectness no matter what unlucky sequence of reactions occurs. However, fast
computation is defined with respect to large probability reaction sequences. Our
definition captures the natural worst case notion of speed.8

Our positive result shows how any detection problem can be decided by a
speed fault free CRN, and further shows that this computation is fast in the
standard stochastic chemical kinetics model [12]. The largest part of this paper

7 A reversible reaction A+ F
F ′ is simply syntactic sugar for two irreversible reac-
tions A+ F →F ′ and F ′→A+ F .

8 We observe that in the literature on computation in CRNs and population protocols
it is almost never the case that computation is slow because the necessary sequence
of reactions is too long – rather, slowdown is dominated by reaction bottlenecks
where two low count species must react. Thus in this work we focus on this essential
type of delay, captured in our notion of speed faults.

concerns the negative result that only detection problems can be computed by
speed fault free CRNs (Section 4.2). The proof of the negative result consists of
finding a worst-case reaction sequence that leads to a speed fault, assuming a
non-detection problem is computed.

Absent speed-faults, the O(1)-count species must initiate cascades through
intermediary large count species in order to “communicate.” Consider the above
“2A problem.” We can imagine isolating the two copies of A in “separate test
tubes” and then use the symmetry between the two A molecules to make the
system think that it’s communicating with just one A (and thereby fail to detect
the second A). To make this argument precise we develop a pumping technique
which formally distinguishes species that can get arbitrarily large with increasing
n from species whose counts are bounded by a constant9. We show that all large
count species that can be encountered along a trajectory can be pumped to
be simultaneously large. We then show that in the context of large counts of
all pumpable species, reaction sequences can be decomposed into separate test
tubes (parallel decomposition). A key part of the argument involves showing that
the speed fault free CRN cannot detect small changes to pumpable species; for
this we develop a new technique for performing surgery on reaction sequences.

2 Previous work and future directions

Much related work in the distributed computing community is phrased in the
language of population protocols rather than CRNs (e.g. [2]). While population
protocols are equivalent to CRNs with exactly two reactants and two products,
and thus a fixed population size, CRNs can naturally describe reactions that
consume or produce net molecules. As a result CRNs can potentially explore an
unbounded state space, and certain questions that are not natural for population
protocols become germane for CRNs (for example: Turing universality). Because
our negative result naturally applies to a changing population size, we phrase
this paper in the language of CRNs.

CRNs have a surprisingly rich computational structure. If we allow the num-
ber of species and reactions to scale with the size of the input (i.e. we view CRNs
as a non-uniform model of computation), then log s species can deterministically
simulate space s-bounded Turing machines [6]. (These results are presented in a
model called vector addition systems [13], but easily carry over.) Thus CRNs are
a very powerful model of non-uniform computation. On the other hand, we ask
what functions can be computed by a fixed CRN (i.e. fixed number of species and
reactions, with input encoded in the initial molecular counts, which corresponds
to a uniform model). In this setting, CRNs are not Turing universal, unless we
allow for some probability of error [3, 15]. In attempting Turing universal com-
putation, there will provably always be “race conditions” that lead to error if
certain reactions occur in a (maybe unlikely but possible) malicious order. The

9 Note that our pumping lemma is very different from a similarly called “pumping
lemma” of ref. [2], which shows that how input can be increased without changing
the output (thus pumping “input”)

fact that even such Turing universal computation is possible, and indeed can be
made “fast” is surprising since finite CRNs necessarily must represent binary
data strings in a unary encoding, since they lack positional information to tell
the difference between two molecules of the same species.

Deterministic computation of both predicates and functions has been ex-
actly characterized, and corresponds to semilinear sets and functions [2, 7]. An-
gluin, Aspnes, and Eisenstat [2] showed that all semilinear predicates can be de-
terministically computed in expected O(n polylog n) “interactions” (molecules
bumping into each other). In a volume of fixed size, with n molecules, there are
an expected Θ(n2) such interactions per unit time, which yields expected time
O((1/n)polylog n) — decreasing with n. Our results imply that when computing
semilinear predicates other then the detection problems, it is always possible to
reach a state (speed fault) from which the expected time to finish the computa-
tion is Ω(1) — independent of n. It is easy to reconcile the two results: in the
construction of ref. [2], the probability that a speed fault is reached decreases
with n, and thus the total expected time decreases with n as well. Our result im-
plies that this is a necessary feature of any such construction, and is not simply
due to insufficient cleverness of the researchers to avoid speed faults.

Other work showing the challenges in parallelizing CRNs include the investi-
gation of running multiple copies of networks in parallel [9], and the inability of
networks starting with only large count species to delay the production of any
species [11].

While in this work we focused on parallelizable predicates, it remains to
explore the class of parallelizable functions. For example, if the initial amount
of A is the input and the final amount of B is the output, then we can think
of the reaction F + A→ 2B as deterministically computing f(x) = 2x. Clearly
as the amount of F increases, the computation converges faster. On the other
hand, we believe that computing division by 2 should not be possible without
speed faults, although that remains to be shown.

Since the occurrence of a speed fault leads to a slow computational bottle-
neck, speed faults affect the tail bounds on the distribution of the computation
time. Indeed, two CRNs may compute with the same fast expected time, but
the one susceptible to speed faults will likely have a larger probability of taking
significantly longer. It remains to rigorously draw out the connection between
tail bounds and speed faults.

3 Preliminaries

3.1 Chemical reaction networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the
set of functions f : Λ→ N. Equivalently, we view an element c ∈ NΛ as a vector
of |Λ| nonnegative integers, with each coordinate “labeled” by an element of Λ.
Given S ∈ Λ and c ∈ NΛ, we refer to c(S) as the count of S in c. Let |c| =
‖c‖∞ = maxS∈Λ c(S). We write c ≤ c′ to denote that c(S) ≤ c′(S) for all S ∈ Λ,

and c < c′ if c ≤ c′ and c 6= c′. Since we view vectors c ∈ NΛ equivalently as
multisets of elements from Λ, if c ≤ c′ we say c is a subset of c′. Given c, c′ ∈ NΛ,
we define the vector component-wise operations of addition c + c′, subtraction
c−c′, and scalar multiplication nc for n ∈ N. For a set ∆ ⊂ Λ, we view a vector
c ∈ N∆ equivalently as a vector c ∈ NΛ by assuming c(S) = 0 for all S ∈ Λ \∆.
Write c � ∆ to denote the vector d ∈ N∆ such that c(S) = d(S) for all S ∈ ∆.
Given S1, . . . , Sk ∈ Λ, c ∈ NΛ, and n1, . . . , nk ∈ Z,we write c+{n1S1, . . . , nkSk}
to denote vector addition of c with the vector v ∈ Z{S1,...,Sk} with v(Si) = ni.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α =
〈r,p, k〉 ∈ NΛ×NΛ×R+, specifying the stoichiometry (amount consumed/produced)
of the reactants and products, respectively, and the rate constant k. A reaction
is unimolecular if it has one reactant and bimolecular if it has two reactants.
For simplicity, in this paper we use k = 1 and the rate constant is omitted.
For instance, given Λ = {A,B,C}, the reaction A + 2B → A + 3C is the
pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN) is a pair
N = (Λ,R), where Λ is a finite set of chemical species, and R is a finite set of
reactions over Λ. A state of a CRN N = (Λ,R) is a vector c ∈ NΛ.

Given a state c and reaction α = 〈r,p〉, we say that α is applicable to c if
r ≤ c (i.e., c contains enough of each of the reactants for the reaction to occur).
If α is applicable to c, then write α(c) to denote the state c + p − r (i.e., the
state that results from applying reaction α to c). A finite or infinite sequence of
reactions (αi), where each αi ∈ R, is a reaction sequence. Given an initial state
c0 and a reaction sequence (αi), the induced execution sequence (or path) q is
a finite or infinite sequence of states q = (c0, c1, c2, . . .) such that, for all ci ∈ q
(i ≥ 1), ci = αi(ci−1). If a finite execution sequence q starts with c and ends
with c′, we write c =⇒q c′. We write c =⇒ c′ if such an execution sequence exists
and we say that c′ is reachable from c. We often abuse terminology and refer
to reaction sequences and execution sequences (paths) interchangeably.

We will find ourselves frequently dealing with infinite sequences of states.
The following technical lemma elucidates certain convenient properties of any
such sequence and will be used repeatedly.

Lemma 3.1 (Dickson’s Lemma [10]). The set of states Nk is well-quasi-
ordered. In particular, every infinite sequence x0,x1, . . . of states has an infinite
nondecreasing subsequence xi0 ≤ xi1 ≤ . . ., where i0 < i1 < ... ∈ N, and every
set U ⊆ Nk has a finite number of minimal elements.

3.2 Stable decidability of predicates

We now review the definition of stable decidability of predicates introduced
by Angluin, Aspnes, and Eisenstat [2]. Intuitively, some species “vote” for a
YES/NO answer, and a CRN N is a stable decider if N is guaranteed to reach
a consensus vote.

A chemical reaction decider (CRD) is a tuple D = (Λ,R,Σ, Υ, φ, s), where
(Λ,R) is a CRN, Σ ⊆ Λ is the set of input species, Υ ⊆ Λ is the set of voters,
φ : Υ → {NO,YES} is the (Boolean) output function, and s ∈ NΛ\Σ is the initial

context. For the input vector (n1, . . . , nk) ∈ Nk, where k = |Σ|, we write the
initial state as i(n1, . . . , nk) ∈ NΛ defined by: i(n1, . . . , nk) � Σ = (n1, . . . , nk)
and i(n1, . . . , nk) � (Λ \ Σ) = s. We extend φ to a partial function on states
Ψ : NΛ 99K {NO,YES} as follows. Ψ(c) is undefined if either c(X) = 0 for
all X ∈ Υ , or if there exist X0, X1 ∈ Υ such that c(X0) > 0, c(X1) > 0,
φ(X0) = NO and φ(X1) = Y ES. Otherwise, there exists b ∈ {NO,Y ES} such
that (∀X ∈ Υ)(c(X) > 0 implies φ(X) = b); in this case, the output Ψ(c) of
state c is b.

A state o is output stable if Ψ(o) is defined and, for all c such that o =⇒ c,
Ψ(c) = Ψ(o). We call a whole CRD D stable if, for any initial state i, there exists
b ∈ {NO,Y ES} such that, for every state x reachable from i, there is an output
stable state o reachable from x such that Ψ(o) = b. If D is stable, then for some
unique subset S0 ⊆ Nk of inputs it always converges to output 0 and stays with
that output, and for the remainder S1 = Nk \ S0 it always converges to output
1 and stays with that output. We say that D stably decides the set S1, or that
D stably decides the predicate ψ : Nk → {0, 1} defined by ψ(x) = 1 iff x ∈ S1.

A set A ⊆ Nk is linear if A = { b +
∑p
i=1 niui | n1, . . . , np ∈ N } for some

constant vectors b,u1, . . . ,up ∈ Nk. A is semilinear if it is a finite union of linear
sets. The following theorem is due to Angluin, Aspnes, and Eisenstat [2]:

Theorem 3.2 ([2]). A set A ⊆ Nk is stably decidable by a CRD if and only if
it is semilinear.

If a YES voter (or any other species, for that matter) cannot be produced by
any sequence of reactions from a state y, then it cannot be produced from any
subset y′ ≤ y. The following lemma is useful when we want to argue the other
way: that for certain species, beyond a certain value, increasing their counts
cannot affect the ability or inability of the state to produce a YES voter. We say
that a state c is committed if, for all states z such that c =⇒ z, z(S) = 0 for all
YES-voting species S. In particular, all output-stable NO states are committed,
and for stable CRDs, committed states are reachable only from inputs on which
the predicate is false.10

Lemma 3.3. For each CRD, there is a constant c such that, for all committed
states c, if c(S) > c for some S ∈ Λ, then for all n ∈ Z, c + {nS} is also
committed.

4 Speed fault free CRDs

In this section we show our main result that speed fault free CRDs decide only
“detection problems,” i.e., detecting the presence or absence of a species, but

10 A committed state is not be output-stable NO if a state without any voters is
reachable from it. The distinct notion of “committed” is useful because (unlike for
output NO stability) the negation of committed is closed under superset (see the
proof of Lemma 3.3), yet (like for output NO stability) reaching a committed state
implies that the predicate value must be false.

not distinguishing between two different positive counts of it. To allow for “par-
allelization” of the computation, we introduce a “fuel” species F , whose count
is allowed to start arbitrarily large.11 Increasing the amount of fuel species is
analogous to increasing the amount of “receptor” in the introduction. We then
formalize the concept of “speed fault free” discussed informally in the introduc-
tion. Briefly, a CRN experiences a speed fault if it reaches a state from which all
paths to a correct state execute some reaction when the counts of all of its reac-
tants are bounded by a constant (a “slow” reaction). Note that in the stochastic
model, the expected time for such a reaction to occur is bounded below by a
constant (independent of the amount of fuel).

Let D = (Λ,R,Σ, Υ, φ, s) be a stable CRD, where Σ = {A1, . . . , Ak} are
the input species and Λ \ Σ contains a special “fuel” species F , with variable
initial count n. The initial count of every other species in Λ \ (Σ ∪ {F}) is s
(unchanging with respect to n). Write the initial state of D with some number
ni of each input Ai and n molecules of F as in(n1, . . . , nk).

Let f ∈ N, let α ∈ R be a reaction and x ∈ NΛ be a state. We say that α
occuring in state x is f -fast if at least one reactant has count at least f in x.
An execution sequence is called f -fast if all reactions in it are f -fast. 12

Definition 4.1. A stable CRD D is speed fault free if for all n1, . . . , nk and all
f ∈ N, for all sufficiently large n, for any state x such that in(n1, . . . , nk) =⇒x,
there is an output stable state y (which has the correct answer with respect to
n1, . . . , nk by the stability of D) such that x =⇒y by an f -fast execution se-
quence.

Definition 4.2. A set S ⊆ Nk is a simple detection set if there is a 1 ≤ i ≤ k
such that S =

{
(x1, . . . , xk) ∈ Nk

∣∣ xi > 0
}
. A set is a detection set if it is

expressible as a combination of finite unions, intersections, and complements of
simple detection sets.

In other words, the predicate corresponding to a simple detection set S is a fi-
nite Boolean combination of questions of the form “is a certain species present?”.
The following theorem is the main result of this paper. We show each direction
in two separate lemmas, Lemma 4.4 and Lemma 4.10.

Theorem 4.3. The sets decidable by speed fault free CRDs are precisely the
detection sets.

11 Allowing multiple fuel species F1, F2, . . . does affect our results since one of our
reactions can be F →F1 + F2

12 It is worth noting that fast reaction sequences are not necessarily fast in the standard
sense of stochastic kinetics, since although each reaction occurs quickly, it could be
that there are a huge number of reactions in the sequence. Since our main result is
a lower bound, this does not hurt the argument (and our upper bound result also
shows that it is possible to decide detection problems quickly under the standard
stochastic model).

4.1 Detection problems are decidable by speed fault free CRDs

This is the easier direction of Theorem 4.3. We give the intuition behind the proof
here, and we do not formally define the model of stochastic chemical kinetics
used to prove the expected running time. See the full version of this paper for
detailed definitions and the proof.

Lemma 4.4. Every detection set is decidable by a speed fault free CRD. This
CRD takes expected time O(log n/n) expected time to stabilize under the standard
model of stochastic chemical kinetics with constant volume.

Proof (sketch). To detect whether a species A is present or not, we may use
“epidemic” reactions A + F → Fa and Fa + F → 2Fa, where F votes NO and
Fa votes YES. That is, if A encounters an F , then F changes state to Fa, and
this information is “broadcast” throughout the population of F ’s. Since the sum
c(Fa) + c(F) = n is constant in any reachable state c, the second bimolecular
reaction always has a reactant with count ≥ n/2 (hence that reaction is always
n
2 -fast), and the output-stable YES state is reached when all F ’s are converted
to Fa. The extension to k input species just means that each F must store k
bits, one for each input species. ut

4.2 Speed fault free CRDs decide only detection problems

Before proceeding to the main argument, we need to develop some technical ma-
chinery. We first show that if a fast execution sequence is used to decrease the
count of some species, then we can identify certain reactions that must necessar-
ily occur (reaction extraction). We then develop a notion of pumping, which is
used to identify species that can get arbitrarily large with increasing fuel. Finally,
we show that reaction sequences in which one reactant is always pumpable can
be decomposed into separate “test-tubes” (parallel decomposition). Finally we
stitch these notions together to show that speed fault free CRDs cannot compute
more than detection problems.

Reaction extraction lemma Intuitively, the lemma below states that a fast
reaction sequence that decreases certain species from high counts to low counts
must contain reactions of a certain restricted form. These reactions will later
be used to do “surgery” on fast reaction sequences, because they give a way to
alter the count of certain species, by inserting or removing those reactions, while
carefully controlling the effect these insertions and removals have on counts of
other species.

Lemma 4.5. Let c1, c2 ∈ N such that c2 > |Λ| · c1, let x,y ∈ NΛ such that
x =⇒y via c2-fast reaction sequence q. Let ∆ = {D ∈ Λ|x(D) ≥ c2,y(D) ≤ c1}.
Then there is an order on ∆, so that we may write ∆ = {D1, D2, . . . , Dl}, such
that, for all i ∈ {1, . . . , l}, there is a reaction αi of the form Di → P1 + . . .+Pk
or Di+S → P1 + . . .+Pk, such that S, P1, . . . , Pk 6∈ {D1, . . . , Di}, and αi occurs

at least c2−|Λ|·c1
|R| times in q in states c in which c(S) ≥ c2.

Lemma 4.5 is formally proved in the full version of this paper. Intuitively,
to see such an ordering exists, it helps to think in reverse, first defining the last
element Dl of the ordering. Consider the potential function Φ(c) =

∑
D∈∆ c(D);

then Φ(x) is large (at least |∆| · c2) and Φ(y) is small (at most |∆| · c1). On the
path from x to y, when Φ is between c2 and |∆| · c1, it cannot get smaller by
reactions of the form Di+Dj → . . ., since Di, Dj ∈ ∆, or that reaction would not
be c2-fast. Therefore to get Φ down requires reactions with at most one reactant
in ∆. Furthermore, if any product were in ∆, this would not decrease the value
of Φ, hence some reaction must be of the desired form: consuming exactly one
element of ∆. This element is Dl, the last in the ordering. Inductively defining
an ordering on ∆ \ {Dl} gives the entire ordering.

Pumpable sets of species This section defines pumpable sets of species:
species whose counts can be made arbitrarily large by increasing the amount
of fuel (species F , see Definition 4.1) and proves some basic properties about
them. For example, the fuel species F is trivially pumpable. If there is a reaction
F +A→F ′ +A, then F ′ is pumpable (if there is an A), because F can be arbi-
trarily large. To get a handle on the notion of speed fault free, we define pumping
to enforce a certain kind of self-consistency (Π-friendly): you can pump without
requiring any reactions where all reactants are not pumpable.

Let Π ⊆ Λ. If a reaction has at least one reactant in Π, say the reaction is Π-
friendly. If x =⇒y via a reaction sequence in which all reactions are Π-friendly,
then we write x =⇒Π y. Let Z = (z1 ≤ z2 ≤ z3 . . .), where each zn ∈ NΛ,
be an infinite nondecreasing sequence of states. A set of species Π ⊆ Λ is Z-
pumpable if there exists a sequence of states X = (x1,x2, . . .) such that: (1) for
all P ∈ Π and m ∈ N, xm(P) ≥ m, and (2) for all m ∈ N, there exists n ∈ N
such that zn =⇒Π xm.13 Call such a sequence (xm) a pumping sequence for Π.
Π is maximal Z-pumpable if it is Z-pumpable and no strict superset of Π is
Z-pumpable.

The next proposition shows that after pumping a maximal Π, all other
species have bounded counts in all states reachable by Π-friendly paths. It is
proven in the full version of this paper. Intuitively, it holds because if any other
species S 6∈ Π could get large via some reaction sequence r, then we could make
the species in Π so large that we are able to hold some in reserve, then execute r,
and then we would have S and all of Π large at the same time, contradicting the
maximality of Π. We will use Proposition 4.6 repeatedly, but its most important
consequence, intuitively, is that that the only way to get something outside of
Π “large” is by executing a “slow” reaction (between two reactants not in Π).

Proposition 4.6. Let Z = (z1 ≤ z2 ≤ . . .) be a infinite nondecreasing sequence
of states, and let Π ⊆ Λ be maximal Z-pumpable, with pumping sequence (xm).
Then there is a constant c such that, for all states y and m,n ∈ N such that
xm =⇒Π y, then for all S ∈ Λ \Π, y(S) < c.

13 We can assume that n → ∞ as m → ∞. This is because (zn) is a nondecreasing
sequence, and so if zn =⇒Π xm for some n,m ∈ N, then for all n′ > n, there is a
superset x′

m ≥ xm such that zn′ =⇒Π x′
m, and x′

m(S) ≥ m for all S ∈ Π.

Parallel decomposition Intuitively, the following lemma shows that systems
reacting byΠ-friendly reactions can be effectively decomposed into separate non-
interacting “test tubes” (in the context of a large excess of Π).14 The following
lemma is proved in the full version of this paper.

Lemma 4.7. Suppose x+y =⇒Π z. Then there are p,p′,p′′ ∈ NΠ , and z′, z′′ ∈
NΛ such that p + x =⇒Π p′+ z′ and p + y =⇒Π p′′+ z′′, where z′+ z′′ = z and
p′ + p′′ = 2p.

Main proof Throughout this section, let D = (Λ,R,Σ, Υ, φ, s) be an arbi-
trary speed fault free CRD with Σ = {A1, . . . , Ak} and fuel species F as in
Definition 4.1. Supposing for the sake of contradiction that D decides some non-
detection set, then there must exist some species Ai (assume without loss of
generality that i = 1), and an input value (n1, n2, . . . , nk) ∈ Nk, where n1 ≥ 1,
with answer NO (without loss of generality) but input value (n1 + 1, n2, . . . , nk)
with answer YES. Let in be the above initial state with n1 molecules of A1,
having n fuel molecules. We will show that for sufficiently large n, in + {A1} is
able to reach a state without YES-voting species, from which the only way to
produce a YES voter is to execute a slow bimolecular reaction.

We now define two infinite sequences of states (xm) and (ym) used in the rest
of the argument. Intuitively (xm) makes “large” all species than can get large
from (in), while (ym) is a sequence of committed states reachable from (xm) (but
they have to be defined in a rather exacting way.) Let sequence I = (in) and let
Π ⊆ Λ be maximal I-pumpable with pumping sequence (xm). In the full version
of the paper we show that there is a d ∈ NΠ such that xm = xm−1 + d. Define
the sequence of output-stable NO states (ym) inductively as follows. For the base
case, let y1 be any output-stable NO state such that x1 =⇒r1 y1; such a path
r1 must exist because D is stable. Inductively assume that xm−1 =⇒rm−1

ym−1.
Then xm = xm−1 +d =⇒rm−1

ym−1 +d. Let fm ∈ N be the largest number such
that there is a fm-fast path pm from ym−1 +d to an output-stable NO state ym.
Then let rm be rm−1 followed by pm.15 By Proposition 4.6, once f is sufficiently
large, any f -fast reaction sequence from xm to ym must be Π-friendly. Thus by
reindexing (xm) to start with a sufficiently large member of the sequence, we
have that for all m, xm =⇒Π ym.

By Dickson’s Lemma there is an infinite nondecreasing subsequence Y =
(ys1 ,ys2 , . . .). Let Γ = { S ∈ Λ | limn→∞ ysn(S) =∞ }. By Proposition 4.6,
Γ ⊆ Π since xsn =⇒Π ysn . Let ∆ = Π\Γ . These are the species that are “large”
in (xm) but are bounded in Y . By further taking appropriate subsequences, we
can ensure that each ysn(S) = ysn+1

(S) if S ∈ Λ \ Γ and ysn(S) < ysn+1
(S) if

S ∈ Γ .

14 Note that in this way Π-friendly bimolecular reactions act somewhat analogously to
unimolecular reactions: if x + y=⇒ z by a sequence of unimolecular reactions, then
x=⇒ z′ and y=⇒ z′′ such that z′ + z′′ = z.

15 By the definition of speed fault free, limm→∞ fm =∞, since xm and ym for increas-
ing m are reachable from input states in with increasing amounts of fuel.

Recall that a state is committed if it cannot produce a YES voter. The next
lemma, formally proved in the full version of the paper, shows that changing
counts of pumpable species (Π) by a “small” amount in xm, so long as m is
sufficiently large, cannot change the ability of xm to reach a committed state.
Intuitively, later on e will represent a change in counts due to “processing” the
extra copy of A1 (the one that changes the correct answer in state in(n1, . . . , nk)
from NO to YES), and the following lemma will help us to derive a contradiction
because the extra copy of A1 should enable the production of a YES voter.

Lemma 4.8. Let sequences (xm) and (ym) be as defined above. For all ε ∈ N,
there exists ε′ ∈ N such that the following holds. For all e ∈ ZΠ with |e| ≤ ε, for
infinitely many m, there exists em ∈ ZΓ with |em| ≤ ε′, and m2 < m such that
xm + e =⇒Π ym2

+ em and ym2
+ em is committed.

Proof (sketch). We know that xm =⇒rm ym. Consider applying rm to xm+e to
get ym+e. This may not work because it could drive some species negative, and
the final state may not be committed. We use Lemma 4.5 to obtain an ordering
∆ = {D1, . . . , Dl} such that we can add or remove from rm reactions of the form
αi : Di + S → P1 + . . .+ Pk where S, P1 . . . , Pk are in Γ ∪ {Di+1, . . . , Dl}. This
gives a way to “fix” the count of Di to make its count equal to its count in ym
by either removing αi (to increase) or adding extra instances of αi (to decrease),
while affecting only species in Γ or “after” Di (hence their counts will be fixed
later). The counts of D1, . . . , Di−1, which have already been fixed, are unaffected
by the surgery to fix Di, because they do not appear in αi. When we are done,
we have increased the “error” in species in Γ (corresponding to em ∈ ZΓ in the
lemma statement), but by Lemma 3.3, ym+em is still committed. Unfortunately,
we may be taking some species negative in the middle of the fixed path. To handle
this, the full argument essentially relies on the definition of ym iteratively defined
by adding d to ym−1, and ends by reaching committed state ym2 + em, for a
smaller m2 < m (see full paper). ut

The next lemma uses Lemma 4.8 to show that, from state xm + e, with
e ∈ ZΛ “small,” we can reach a committed state in which every species that can
be “large”, is actually large.

Lemma 4.9. Let sequence (xm) be as defined above. For all ε ∈ N, there exists
c ∈ N and Ω ⊆ Λ such that the following holds. For all e ∈ ZΠ such that |e| ≤ ε,
there exists an infinite sequence We = (wn) of states such that, for all n ∈ N,
there exists mn ∈ N, such that the following is true: (1) xmn

+ e =⇒Π wn, (2)
wn is committed, (3) for all S ∈ Ω, wn(S) ≥ n, (4) for all S ∈ Λ \Ω and all u
such that wn =⇒Ω u, u(S) ≤ c, and (5) wn are nondecreasing.

Lemma 4.9 is proven in the full version of this paper. Intuitively (albeit
imprecisely), it follows by letting Ω be a maximal Y -pumpable set of species,
where Y is the infinite sequence of committed states of the form ym2 +em shown
to exist in Lemma 4.8. That is, while Π contains species that can simultaneously
get large in state xm starting from the initial state, and Γ contains species that

happen to be large in the committed states ym2 + em reachable from xm + e, Ω
contains possibly more species than Γ : those that can get large, starting from
states ym2

+ em.
The next lemma shows that speed fault free CRDs decide only detection

problems. Lemma 4.10 is formally proved in the full version of this paper.

Lemma 4.10. D is not speed fault free.

Proof (sketch). Recall initial states in encode an input value making the pred-
icate false, and in + {A1} encode an input value making the predicate true.
Let e = 0 and consider the corresponding W0 = (wn). By Lemma 4.9 we have
in′ =⇒Π xm =⇒Π wn. We can rewrite this path as (in′ \ {A1}) + {A1}=⇒Π wn,
and applying Lemma 4.7 obtain that there are p,p′ ∈ NΠ such that: p +
{A1}=⇒Π p′ + b, where b ≤ wn. Call this path r. Since b ≤ wn, it must
be that b is committed even if any amount of Ω is added to it.

Let e = p′ − p ∈ ZΠ and consider the (different) sequence We = (wn)
obtained using this e from Lemma 4.9. For all n, there is m such that xm +
e =⇒Π wn by some path pn. Now, choose n large enough (so xm ≥ p) and
add the extra molecule of A1: xm + {A1}=⇒Π

r xm + (p′ − p) + b = xm + e +
b =⇒Π

pn wn + b. Because this state is reachable from a valid initial state with
one extra molecule of A1, we must be able to produce a YES voter from it. By
assumption of a speed fault free CRD, this must be a fast path: for all f , there
is an n such that wn + b =⇒ zn by an f -fast path qn, and zn contains a YES
voter. Is qn Ω-friendly? If qn is Ω-friendly then by Lemma 4.7 we can reach a
YES voter solely from wn or b given enough extra of species in Ω. This is a
contradiction since both wn and b are committed, even if any amount of Ω is
added (by Lemma 3.3).

Thus qn cannot be entirely Ω-friendly. Let αn be the first reaction that is
not Ω-friendly, and let un be the state immediately before this reaction occurs.
If for all f , there is a qn that is f -fast, it must be that un contains count f of
some species Xn that is not in Ω (otherwise, αn would be Ω-friendly). Consider
f > 2c where c is the constant from Lemma 4.9. Since the initial portion of qn
that leads to un is Ω-friendly, we have wn + b =⇒Ω un and Lemma 4.7 applies.
Consequently, ∃o,o′,o′′ ∈ NΩ and u′,u′′ ∈ NΛ such that o + wn =⇒Ω o′ + u′n
and o + b =⇒Ω o′′ + u′′n and u′n + u′′n = un. Thus either u′n or u′′n must contain
at least f/2 of Xn. Since wn′ are nondecreasing and are larger than n′ on Ω, for
large enough n′, wn′ from We exceeds o + wn and wn′ from W0 exceeds o + b.
But then we obtain a contradiction of condition (4) in Lemma 4.9. ut

Acknowledgements. We thank Damien Woods, Anne Condon, Chris Thachuk,
Bonnie Kirkpatrick, Monir Hajiaghayi, and Ján Maňuch for useful discussions.

References

[1] Dana Angluin, James Aspnes, Zoë Diamadi, Michael Fischer, and René Peralta.
Computation in networks of passively mobile finite-state sensors. Distributed
Computing, 18:235–253, 2006. Preliminary version appeared in PODC 2004.

[2] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predi-
cates are semilinear. In PODC 2006: Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing, pages 292–299, New York, NY,
USA, 2006. ACM Press.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by popu-
lation protocols with a leader. Distributed Computing, 21(3):183–199, September
2008. Preliminary version appeared in DISC 2006.

[4] Luca Cardelli. Strand algebras for DNA computing. Natural Computing,
10(1):407–428, 2011.

[5] Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approxi-
mate majority. Scientific Reports, 2, 2012.

[6] E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential space com-
plete problems for Petri nets and commutative semigroups (preliminary report).
In STOC 1976: Proceedings of the 8th annual ACM Symposium on Theory of
Computing, pages 50–54. ACM, 1976.

[7] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function com-
putation with chemical reaction networks. Natural Computing, 2013. to appear.
Preliminary version appeared in DNA 2012.

[8] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli,
David Soloveichik, and Georg Seelig. Programmable chemical controllers made
from DNA. Nature Nanotechnology, 8(10):755–762, 2013.

[9] Anne Condon, Alan Hu, Ján Maňuch, and Chris Thachuk. Less haste, less waste:
On recycling and its limits in strand displacement systems. Journal of the Royal
Society Interface, 2:512–521, 2012. Preliminary version appeared in DNA 2011.

[10] Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant num-
bers with n distinct prime factors. American Journal of Mathematics, 35(4):413–
422, October 1913.

[11] David Doty. Timing in chemical reaction networks. In SODA 2014: Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 772–784,
January 2014.

[12] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[13] Richard M Karp and Raymond E Miller. Parallel program schemata. Journal of
Computer and system Sciences, 3(2):147–195, 1969.

[14] Carl A Petri. Communication with automata. Technical report, DTIC Document,
1966.

[15] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Com-
putation with finite stochastic chemical reaction networks. Natural Computing,
7(4):615–633, 2008.

[16] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal sub-
strate for chemical kinetics. Proceedings of the National Academy of Sciences,
107(12):5393, 2010. Preliminary version appeared in DNA 2008.

	Speed faults in computation by chemical reaction networks

