
Noname manuscript No.
(will be inserted by the editor)

Speed faults in computation by chemical reaction
networks

Ho-Lin Chen · Rachel Cummings · David Doty · David Soloveichik

Abstract Chemical reaction networks (CRNs) for-

mally model chemistry in a well-mixed solution. As-

suming a fixed molecular population size and bi-

molecular reactions, CRNs are formally equivalent to

population protocols, a model of distributed comput-

ing introduced by Angluin, Aspnes, Diamadi, Fis-

cher, and Peralta (PODC 2004). The challenge of

fast computation by CRNs (or population protocols)

is to not rely on a bottleneck “slow” reaction that

requires two molecules (agent states) to react (com-

municate), both of which are present in low (O(1))

counts. It is known that CRNs can be fast in expec-

tation by avoiding slow reactions with high probabil-

ity. However, states may be reachable from which the
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correct answer may only be computed by executing

a slow reaction. We deem such an event a speed fault.

We show that the predicates stably decidable by

CRNs guaranteed to avoid speed faults are precisely

the detection predicates: Boolean combinations of

questions of the form “is a certain species present

or not?”. This implies, for instance, that no speed

fault free CRN decides whether there are at least

two molecules of a certain species — i.e., speed fault

free CRNs “can’t count.”

Keywords population protocol · chemical reaction

network · parallelism · fault-tolerance

1 Introduction

Background. Understanding the principles of molec-

ular computation is essential to making sense of in-

formation processing in biological cellular regulatory

networks. Further, we are rapidly approaching the

limit of our conceptual understanding in engineer-

ing of artificial regulatory networks, whether to be

inserted into biology to rewire behavior, or for com-

pletely synthetic life-like systems. The theory of com-

putation has proven invaluable in realizing informa-

tion processing in electronic systems, and much-studied

algorithms underly the behavior of everything from

the internet to video games. However, a deep un-

derstanding of the computational principles underly-

ing much of chemical regulation is still lacking. How

molecular networks can be programmed to process

information and carry out computation subject to

the natural constraints of aqueous chemistry is not

well-understood.

A foundational model of chemistry commonly used

in natural sciences is that of chemical reaction net-
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works (CRNs), i.e., (finite) sets of chemical reactions

such as A+B → A+C. Subject to discrete seman-

tics (integer number of molecules) the model corre-

sponds to a continuous time, discrete state, Markov

process [20]. A state of the system is a vector of non-

negative integers specifying the molecular counts of

the species (e.g., A, B, C), a reaction can occur

only when all its reactants are present, and tran-

sitions between states correspond to reactions (i.e.,

when the above reaction occurs the count of B is

decreased by 1 and the count of C increased by 1).

The transition rate is proportional to the product of

the counts of the reactants. CRNs are widely used

to describe natural biochemical systems such as the

intricate cellular regulatory networks responsible for

the information processing within cells. With recent

advances in synthetic biology, CRNs are a promising

language for the design of artificial biochemical net-

works. For example, the physical primitive of nucleic-

acid strand displacement cascades provides concrete

chemical implementations of arbitrary CRNs [6, 12,

26]. Thus, since in principle any CRN can be built,

hypothetical CRNs with interesting behaviors are

becoming of more than theoretical interest.

The importance of the CRN model is underscored

by the observation that intimately related models re-

peatedly arise in theoretical computer science under

different guises: e.g., vector addition systems [22],

Petri nets [24], population protocols [1]. The con-

nection to distributed computing models, in turn,

resulted in novel insights regarding natural cellu-

lar regulatory networks. For example the “approx-

imate majority” population protocol [4] has been

connected to a number of biological networks [7, 8].

Motivation: parallelism in chemical computation.

Parallelism is a basic attribute of chemistry, and

one that is of central importance in understanding

molecular information processing. Intuitively, the more

molecules are concentrated in a fixed volume, the

more interactions per unit time can occur. This kind

of parallelism is both a blessing and a curse: it can be

used to speed up computation, but we must be care-

ful to avoid “race conditions” (reactions happening

in an unintended order) that may lead to error.

As motivation consider a few very basic tasks

in which a chemical system (e.g., cell) responds to

molecular signals present in very small quantities.

Fig 1 contains a number of examples of chemical

computation of a predicate over the initial molecu-

lar counts of the input species A (or A1, . . . , Ak for

multiple inputs). The truth value of the predicate

is output by the species Y : if the predicate is true

(YES) the system eventually reaches a state with Y

permanently present, while if the predicate is false

(NO) the system eventually reaches a state with Y

permanently absent. In all cases in the figure, the ini-

tial state contains exactly the input molecules and

n molecules of fuel species F .1 Chemically the fuel

species can be thought of as receptors that mediate

the interactions. In order to ascertain whether the

computation speeds up with greater “parallelism”,

we look at how the expected time of the computa-

tion scales with n.

Consider the CRN shown in Fig 1(b) for the pred-

icate “there is at least 1 molecule of species A1 and

at least 1 molecule of species A2”. Intuitively, this

strategy corresponds to having receptors F that in

order to activate need to bind both A1 and A2. By

having n receptors F we can increase the rate of

the first reaction, but if there is only one molecule of

A1, there will be at most one molecule of G and thus

the second reaction occurs at a rate independent of

the amount of receptor. This “bottleneck” reaction

makes this scheme not parallelizeable.

A better strategy is to amplify the signal before

taking the conjunction: e.g., Fig 1(c). Here the recep-

tors release A1 back upon interacting with it, and a

single A1 can interact with many receptors (convert-

ing them from F to G). Intuitively, the more recep-

tors F we have, the faster we’ll get a large number of

G’s, and the faster Y will get produced via the sec-

ond reaction. More specifically, observe that starting

with n > 0 molecules of F , and one molecule of A1

and A2 each, the reachable states without Y are:

for 0 ≤ m ≤ n, ((n − m) F, m G, 1 A1, 1 A2).

From any reachable state without Y , we can reach a

state with a Y through a sequence of reaction execu-

tions where one of the reactants is present in at least

b
√
nc count,2 and under stochastic chemical kinet-

ics, the expected time to produce a Y is O(1/
√
n) —

decreasing with n.3 Scheme Fig 1(d) is even faster:

1 Some CRNs in Figure 1 require n to exceed a pos-
itive constant lower bound for correctness: 1 in cases
(b),(c),(f),(g), 2 in cases (d),(h), and 3 in case (i).
2 If m < b

√
nc, execute the first reaction b

√
nc−m times

(resulting in b
√
nc molecules of G), and then execute the

second reaction. If m ≥ b
√
nc, execute the second reaction.

3 Section 4.1 gives the formal model required to derive
this expected time; here we briefly justify the claimed ex-
pected time. To simplify the analysis we assume the sec-
ond reaction does not happen until the first reaction has
produced at least

√
n copies of G; otherwise the expected

time is even lower than that derived below. The rate of
a bimolecular reaction is proportional to the product of
the counts of the reactants. After i instances of the first
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a) e)

b) f)

c) g)
i)

h)
d)

speed fault free

speed fault free

error prone

Y iff [at least 1 molecule of A1 
and at least 1 molecule of A2]

Y iff [at least 2 molecules of A] Y iff [(at least 1 molecule of A1 
or at least 1 molecule of A2) 

and no molecules of A3]

Fig. 1 Motivating examples of computation and parallelism with chemical reaction networks. The CRNs in each column
compute a different predicate, which is shown on top. The initial state contains exactly the input molecules and n

molecules of fuel species F . The CRN outputs YES (respectively NO) when it reaches a state in which Y is present
(resp. absent) and every reachable state has Y present (resp. absent). (Note that the formal definitions in this paper
adhere to a different output convention that is symmetric with respect to NO and YES outputs; see Remark 3.3.) a.

A1 and A2 directly interact. b. F acts as a receptor that needs to react with A1 and A2 to activate and produce Y .
c. Same as (b) but receptors F release A1 back upon interacting. d. Same as (b) but receptors F upon reacting with
A1 autocatalytically amplify the signal. e. The natural analog of (a) for the second predicate. f. An analog of (b) for
the second predicate. Note that the first reaction is made reversible (a reversible reaction is simply syntactic sugar for
two irreversible reactions) to avoid error if both A molecules react with F . g. The natural analog of (d) for the second
predicate. However this CRN is error prone: if both A molecules react with F then Y will not be produced. h. We can
eliminate the error possibility in (g) by adding species H that is a “backup copy” of A, and the fourth reaction that
produces Y in case both A react with F . i. In the previous examples, once Y is produced it can never be consumed and
thus the system has stabilized to an output. For “non-monotonic” predicates, such as that in the third column, it is
necessary to consume Y as well as to produce it.

it can be shown that from any reachable state, the

expected time to produce Y scales as O(log(n)/n).

Thus both (c) and (d) are parallelizeable.

Now consider a slightly different predicate: “there

are at least 2 molecules of species A”. Consider the

CRN in Fig 1(g) based on (d). While it is paral-

lelizeable in the sense that with increasing n is more

quickly converges to an answer, the answer might

be wrong. Indeed, it suffers from a race condition:

reaction have occurred, there are n− i copies of F , so the
expected time for the next occurrence of the first reac-
tion is 1

n−i , so by linearity of expectation the expected

time from the state with m < b
√
nc molecules of G to

reach the state with b
√
ncmolecules of G is proportional to∑b√nc

i=m 1/(n− i) ≤
√
n ·1/(n−

√
n) = O(1/

√
n). Finally the

rate of the second reaction when there are b
√
nc molecules

of G is proportional to
√
n and thus the expected time for

it to fire is O(1/
√
n) for a total expected time of O(1/

√
n).

The threshold
√
n used in the analysis was chosen to en-

sure the optimal tradeoff between the rates of individual
reaction executions and the total number of reaction exe-
cutions.

if both A’s react with F , Y will never be produced.

We can fix this system by adding species H that

“backup” A as shown in Fig. 1(h). Then if both A

happen to react with F , the last reaction H+H→Y

can still produce Y . Although the last reaction cor-

rects the error, it acts as a bottleneck if both A hap-

pen to react with F .

When a CRN reaches a state from which output

can never change again, we say that the CRN has

stabilized ; stabilization is a well-established notion

of output for population protocols [2] and naturally

extends to CRNs [11]. Note that systems (c), (d),

and (i) have the property that the expected time

to stabilize to the correct answer from any reach-

able state decreases with n. This property can be

thought of as a certain kind of “self-stabilization”

(note the different use of the word “stabilization”),

in which a distributed system is expected to work

as desired even after worst-case transient faults [5].

Is it possible to construct a CRN for the predicate

“there are at least 2 molecules of species A” that has
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this property? (Our negative result shows that this

is impossible.)

Speed faults. We formalize the notion of unavoidable

bottleneck reactions by defining speed faults. A speed

fault occurs if a state is reached such that to stabi-

lize to the correct output from that state requires

using a reaction where the counts of all reactants

are bounded by a constant independent of n. Thus

in Fig. 1(h), a speed fault occurs if both A molecules

react with F in the first reaction and we have to rely

on the last reaction.4

Note that the utility of the notion of speed faults

is strongest for proving negative results. Although

the occurrence of a speed fault in a particular execu-

tion sequence implies that it will take a long time to

stabilize to the correct output, the absence of a speed

fault does not imply fast stabilization. This is be-

cause an execution sequence might take a long time

if it consists of a lot of reaction executions, whose

number may increase with n.5 Thus for our positive

result we compute the expected time from any reach-

able state and show that it indeed decreases with n

(Lemma 4.5).

We also emphasize that the possibility of a speed

fault does not imply the CRN requires a large ex-

pected time from the initial state, because the speed

fault may only be encountered with very low proba-

bility (that may decrease with n).

Our definition of speed fault free CRNs considers

the paths to stabilization and not convergence. We

say that an execution sequence converged to a partic-

ular output value at the time point when the output

is produced and never changes again, although a dif-

ferent output might be reachable for a while longer

(because the CRN has not yet stabilized). For ex-

ample, consider the CRN in Fig. 1(i), and suppose

that we start with 1 molecule of A1, A2 and A3 each

(and n fuel molecules F ). Further suppose that the

following (unlikely) sequence of events happens: Y

4 By “speed fault” we do not mean the event “a reac-
tion between two low count species” (a slow reaction), but
rather the event “enter a state from which a slow reaction
is necessary to reach the correct output.” Some CRNs ex-
perience the fault immediately, such as A1 + A2 → Y ,
which suffers from “original sin”: even from the initial
state, a slow reaction is required to produce the output.
5 We observe that in the literature on computation in

CRNs and population protocols it is almost never the case
that computation is slow because the necessary sequence
of reactions is too long – rather, slowdown is dominated
by reaction bottlenecks where two low count species must
react. Thus in this work we focus on this essential type of
delay, captured in our notion of speed faults.

is produced in the first reaction, G is produced in

the third reaction, Y is consumed in the fifth reac-

tion, and then the fourth reaction converts all of F

to G before reaction 2 has a chance to occur. Note

that in this case, the CRN quickly converged to the

correct output (NO) and never changed the answer

again, but it takes many more reaction executions

before the second reaction became impossible (all F

was consumed) and the system stabilized. Although

we consider stabilization to be the ultimate goal of

deterministic computation, and view that prior to

stabilization the computation is not complete, fast

convergence is considered sufficient in some contexts

(e.g., Section 2 covers some prior results on conver-

gence).

Results. To discuss the generality of our results, we

need to consider the input convention more care-

fully. In the examples above, the initial state contains

only input species and F . In general starting with

fixed amounts of other species as an initial context

(for example a single leader molecule L) allows for

a greater variety of CRNs.6 Unless otherwise speci-

fied, we allow an arbitrary initial context. Our main

result (Theorem 4.4) says that the predicates decid-

able by speed fault free CRNs are precisely the detec-

tion predicates: Boolean combinations of questions of

the form “is a certain species present or not?”. Thus

speed fault free CRNs “can’t count.”

A simpler-to-prove version of the negative di-

rection (Lemma 4.14) shows that speed fault free

CRNs without an initial context (so-called leaderless

CRNs [18]) cannot compute a predicate ψ unless it

is closed under doubling: ψ(x) = ψ(2x) for all inputs

x. The “2A predicate” in Fig. 1 is not closed under
doubling (ψ(1) = 0 but ψ(2) = 1), thus this result

immediately implies that it is not computable by any

speed fault free leaderless CRN. As Remark 4.16 in-

dicates, the proof’s conclusion is actually stronger

than the negative direction of Theorem 4.4, because

it excludes fast convergence, not just fast stabiliza-

tion.

High level intuition for the negative results. Disal-

lowing speed-faults, the O(1)-count species must ini-

tiate cascades through intermediary large count species

in order to “communicate.” Consider the above “2A

predicate.” We can imagine isolating the two copies

6 For example, the simplest CRN computing the pred-
icate “there is an odd count of A” may be: A + L→Y ,
A + Y →L, which starts with 1 copy of L as the leader.
(Of course, this CRN is not parallelizeable.)
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of A in “separate test tubes” and then use the sym-

metry between the two A molecules to make the sys-

tem think that it’s communicating with just one A

(and thereby fail to detect the second A). To make

this argument precise we develop a pumping tech-

nique that formally distinguishes species that can

get arbitrarily large with increasing n from species

whose counts are bounded by a constant.7 We show

that all large count species that can be encountered

along a trajectory can be pumped to be simultane-

ously large. We then show that in the context of large

counts of all pumpable species, reaction sequences

can be decomposed into separate test tubes (paral-

lel decomposition). A key part of extending the ar-

gument to allow an initial context involves showing

that the speed fault free CRN cannot detect small

changes to pumpable species; for this we develop a

new technique for performing surgery on reaction se-

quences.

Finite density constraint. It is physically impossible

to fit arbitrarily many molecules in a fixed physi-

cal volume. While for large enough molecular counts

we will run into this finite density constraint [25],

we study the scaling of speed with molecular count

before that point is reached. A complementary per-

spective is that our task is to compute as quickly as

possible in volume Ω(n) with O(n) total molecules,

where the n molecules of F represent the “other”

molecules. The more of these other molecules there

are, the slower our computation will be (since the

volume scales with n), unless we involve F in the

computation. In this perspective, a speed fault cor-

responds to reaching a state from which we require

an Ω(n) time (“slow”) reaction, while our positive

result implies that all detection predicates can be

computed in O(log n) time (“fast”) from any reach-

able state. In the context of time complexity of popu-

lation protocols [3], these respectively correspond to

the notion ofΩ(n) versusO(log n) “parallel time,” or

equivalently, Ω(n2) versus O(n log n) expected pair-

wise interactions between agents (on the assumption

that ≈ n interactions happen per “unit time”).

2 Previous work and future directions

Much related work in the distributed computing com-

munity is phrased in the language of population pro-

7 Note that our pumping lemma is very different from a
similarly named “pumping lemma” of ref. [2], which shows
how input can be increased without changing the output
(thus pumping input).

tocols rather than CRNs (e.g., [2]). While population

protocols are equivalent to CRNs with exactly two

reactants and two products, and thus a fixed pop-

ulation size, CRNs can naturally describe reactions

that consume or produce net molecules. As a result

CRNs can potentially explore an unbounded state

space, and certain questions that are not natural for

population protocols become germane for CRNs (for

example: Turing universality).

CRNs have a surprisingly rich computational struc-

ture. If we allow the number of species and reactions

to scale with the size of the input (i.e., view CRNs as

a non-uniform model of computation), then there is

a certain sense in which log s species can determin-

istically simulate space s-bounded Turing machines,

albeit the simulation is grossly inefficient [9]. These

results are presented in a model called vector addi-

tion systems [22], but carry over. On the other hand,

we can ask — as we do here — what functions can

be computed by a fixed CRN (i.e., fixed number of

species and reactions), with input encoded in the

initial molecular counts (i.e., view CRNs as a uni-

form model of computation). In this setting, CRNs

are not Turing universal, unless we allow for some

probability of error [3,25] (but see [15]). In attempt-

ing Turing universal computation, there will prov-

ably always be “race conditions” that lead to error

if certain reactions occur in a (maybe unlikely but

possible) malicious order. The fact that even such

Turing universal computation is possible, and indeed

can be made “fast” is surprising since finite CRNs

necessarily must represent binary data strings in a

unary encoding, since they lack positional informa-

tion to tell the difference between two molecules of

the same species.

Deterministic computation of both predicates and

functions8 has been exactly characterized, and cor-

responds to semilinear sets and functions [2, 11].9

Angluin, Aspnes, and Eisenstat [2] define the for-

mal notion of determinism that we use here (“sta-

ble” computation, see Section 3.3). The authors also

showed that all semilinear predicates can be deter-

ministically computed in expected O(n polylog n)

“interactions” (molecules bumping into each other)

from the initial state. In a volume of fixed size, with

n molecules, there are an expected Θ(n2) such in-

8 In function computation, unlike predicate computa-
tion, the exact count of output species represents the out-
put value.
9 However, the computational power of predicates with

asymmetric output remains to be shown, although it is
likely to be semilinear as well.
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teractions per unit time, which yields expected time

O((1/n)polylog n) in our setting. Since semilinear

predicates are a much larger class than detection

predicates, their construction is necessarily suscepti-

ble to speed faults. Indeed, the overall expected time

to complete the computation starting from the ini-

tial state decreases with n only because it becomes

less and less likely that a speed fault occurs.

A number of fundamental questions related to

the speed of deterministic computation in CRNs re-

main unanswered. The first concerns the gap be-

tween two key time points in stable computation.

A stably computing CRN must eventually reach a

state with the correct output such that no sequence

of reactions can change the output (stabilization).

However, as we’ve seen, there might be a delay be-

tween when the output changes for the last time

(convergence), and states with a different output

become unreachable (stabilization). Indeed, in the

construction of ref. [2], there is a factor of n dif-

ference between the expected times to convergence

and stabilization from the initial state. Our result

implies that for all non-detection predicates, there

is a reachable state from which the expected time

to stabilize doesn’t decrease with n. But we con-

jecture a stronger statement: for all non-detection

predicates, there is a reachable state such that the

expected time to converge from that state is bounded

below by a constant independent of n. Thus, we be-

lieve that in as far as speed fault free computation is

concerned, the distinction between convergence and

stabilization is immaterial. Here, we prove a special

case of the above conjecture for leaderless CRNs sta-

bly computing predicates not closed under doubling

(see Remark 4.16).

On the other hand, we conjecture that for most

predicates, measuring expected time only from the

initial state (instead of any reachable state) reveals

a significant difference between convergence and sta-

bilization. Specifically: for all non-detection predi-

cates, the expected time to reach an output stable

state from the initial state is bounded below by a

constant independent of n. In contrast, the above-

mentioned result [2] shows that all semilinear predi-

cates can be deterministically computed in expected

time O((1/n)polylog n) when time is measured to

convergence — decreasing with n.

In our definition of speed fault free CRNs, we

have introduced an auxiliary “fuel” species, primar-

ily to avoid conflating the questions “What is the in-

put to the computation?” and “How many molecules

are available to help parallelize the computation?”

For each fixed input x, the amount of fuel n is al-

lowed to be arbitrarily large compared to ‖x‖, so the

input molecules contribute negligibly to the paral-

lelization. However, it is also natural to define speed

fault free CRNs without the fuel species, so that the

molecular count is potentially dominated by the size

of the input. The resulting characterization may be

more aligned with the expected time results from the

literature on population protocols and CRNs [1,3,4,

11,14,17–19,25].

While in this work we focus on parallelizeable

predicates, it remains to explore the class of paral-

lelizeable functions. For example, if the initial amount

of A is the input and the final amount of Y is the out-

put, then we can think of the reaction F + A→ 2Y

as deterministically computing f(x) = 2x. Clearly

as the amount of F increases, the computation con-

verges and stabilizes faster. On the other hand, we

believe that computing the function f(x) = bx/2c is

not possible without speed faults, although that re-

mains to be shown. (It is computable by the reaction

A+A→ Y , but this does not speed up with F .)

The current work stems from an effort to de-

velop lower bounds for computation time for CRNs

and population protocols. We hope that the tech-

niques that we have developed will also prove useful

in showing lower bounds on the computation time for

other tasks than those considered here. For example,

recent work adapts the techniques herein to prove an

expected time lower bound on leader election [19].

The conclusion is that the näıve leader elimination

CRN (L+L→L) has optimal expected time to stabi-

lize to a single leader from a “uniform” initial state.

Other work showing the challenges in paralleliz-

ing CRNs include the investigation of running multi-
ple copies of networks in parallel [13], and the inabil-

ity of networks starting with only large count species

to delay the production of any species [17]. Although

using more molecules in the same volume can in-

crease the number of interactions per unit time, our

results and these citations indicate that it can be

sometimes nontrivial or impossible to exploit these

interactions for computation.

3 Preliminaries

3.1 Chemical reaction networks

For k ∈ Z+, we write Nk to denote the set of all

vectors of k nonnegative integers. A predicate is a

Boolean-valued function ψ : Nk → {0, 1}; for nota-
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tional convenience we identify a predicate ψ equiva-

lently with the set ψ−1(1) =
{

x ∈ Nk | ψ(x) = 1
}
.

If Λ is a finite set (in this paper, of chemical species),

we write NΛ to denote the set of functions f : Λ→ N.

Equivalently, we view an element c ∈ NΛ as a vec-

tor of |Λ| nonnegative integers, with each coordinate

“labeled” by an element of Λ. Given S ∈ Λ and

c ∈ NΛ, we refer to c(S) as the count of S in c.

Let |c| = ‖c‖∞ = maxS∈Λ c(S). We write c ≤ c′ to

denote that c(S) ≤ c′(S) for all S ∈ Λ, and c < c′

if c ≤ c′ and c 6= c′. Since we view vectors c ∈ NΛ
equivalently as multisets of elements from Λ, if c ≤ c′

we say c is a subset of c′. Given c, c′ ∈ NΛ, we define

the vector component-wise operations of addition

c+c′, subtraction c−c′ (which can have negative en-

tries), and scalar multiplication nc for n ∈ N. For a

set ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently as a

vector c ∈ NΛ by assuming c(S) = 0 for all S ∈ Λ\∆.
Given S1, . . . , Sk ∈ Λ, c ∈ NΛ, and n1, . . . , nk ∈ Z,

we write c + {n1S1, . . . , nkSk} to denote vector ad-

dition of c with the vector v ∈ Z{S1,...,Sk} with

v(Si) = ni. (Note that we will sometimes use nega-

tive coefficients in the notation {n1S1, . . . , nkSk}.)
Given a finite set of chemical species Λ, a reaction

over Λ is a triple α = 〈r,p, k〉 ∈ NΛ×NΛ×R+, speci-

fying the stoichiometry (amount consumed/produced)

of the reactants and products, respectively, and the

rate constant k. A reaction is unimolecular if it has

one reactant and bimolecular if it has two reactants.

We use no higher-order reactions in this paper.10

Since the results of this paper hold no matter the

rate constants, without loss of generality, in this pa-

per we use k = 1 and the rate constant is omitted

from the notation. For instance, given Λ = {A,B,C},
the reaction A + B → A + 3C is the pair 〈(1, 1, 0),

(1, 0, 3)〉.A (finite) chemical reaction network (CRN)

is a pair N = (Λ,R), where Λ is a finite set of chem-

ical species, and R is a finite set of reactions over Λ.

A state of a CRN N = (Λ,R) is a vector c ∈ NΛ.

Given a state c and reaction α = 〈r,p〉, we say

that α is applicable to c if r ≤ c (i.e., c contains

enough of each of the reactants for the reaction to

occur). If α is applicable to c, then write α(c) to

denote the state c+p− r (i.e., the state that results

from applying reaction α to c). A finite or infinite

sequence of reactions (αi), where each αi ∈ R, is

10 Sometimes the CRN model is extended to higher or-
der reactions, but the kinetic model is hard to justify as
more than two molecules are not likely to directly inter-
act. Usually, higher order reactions are used simply as an
approximation of a sequence of unimolecular and bimolec-
ular elementary reactions.

a reaction sequence. Given an initial state c0 and

a reaction sequence (αi), the induced execution se-

quence (or path) q is a finite or infinite sequence of

states q = (c0, c1, c2, . . .) such that, for all ci ∈ q

(i ≥ 1), ci = αi(ci−1).11 If a finite execution se-

quence q starts with c and ends with c′, we write

c =⇒q c′. We write c =⇒ c′ if such an execution se-

quence exists and we say that c′ is reachable from

c.

3.2 Algebra

A few concepts from vector algebra have proven use-

ful in describing the reachable states of CRNs, as

well as characterizing their computational power (see

Section 3.3). A set A ⊆ Nk is linear if A = { b +∑p
i=1 niui | n1, . . . , np ∈ N } for some constant vec-

tors b,u1, . . . ,up ∈ Nk. A is semilinear if it is a

finite union of linear sets. A is a monoid if 0 ∈ A

and A+A ⊆ A, i.e., A is closed under addition. A is a

monoid coset (a.k.a. monoid offset) if A = b+M for

some constant vector b ∈ Nk and monoid M ⊆ Nk.

A linear set is a natural generalization of the

notion of a periodic subset of N to higher dimen-

sions. For example, the “slope 1 line” { (x1, x2) ∈
N2 | x1 = x2 } is a linear set. All linear sets are

monoid cosets (and they are monoids if b = 0 in the

definition of linear), but the converse does not hold.

For example, the set { (x1, x2) ∈ N2 | x2 ≤ x1 ≤
2x2 − 1} is a monoid, but it is not linear (or even

semilinear).

A powerful result due to Leroux [23] helps to re-

strict the complexity of the set of reachable states. It

has long been known that the set of states reachable

by a CRN from a given initial state is not necessarily
semilinear [21], but recently Leroux showed that it

is representable as a finite union of monoid cosets.

(Leroux actually proves a more powerful result in-

volving the first-order definability of certain sets, but

the following implication is sufficient for our pur-

poses.) For any CRN C = (Λ,R) and set X ⊆ NΛ,

let postC(X) =
{

y ∈ NΛ
∣∣ (∃x ∈ X) x =⇒y

}
be

the set of states reachable from some state in X.

Theorem 3.1 ( [23]) If X ⊆ NΛ is semilinear,

then postC(X) is a finite union of monoid cosets.

11 When the initial state to which a reaction sequence
is applied is clear from context, we often overload termi-
nology and refer to a reaction sequence and an execution
sequence interchangeably as paths. The possibility that
different reactions could result in identical state change
(e.g., A → B and A + C → B + C when C is present) is
immaterial to the arguments in this paper.
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We will find ourselves frequently dealing with in-

finite sequences of states. The following technical

lemma elucidates a convenient property of any such

sequence and will be used repeatedly.

Lemma 3.2 (Dickson’s Lemma [16]) Every in-

finite sequence x0,x1, . . . ∈ NΛ has an infinite non-

decreasing subsequence xi0 ≤ xi1 ≤ . . ., where i0 <

i1 < ... ∈ N.

3.3 Stable decidability of predicates

We now review the definition of stable decidability

of predicates introduced by Angluin, Aspnes, and

Eisenstat [2]. Intuitively, some species “vote” for a

YES/NO answer, and a CRN is a stable decider if it

is guaranteed to reach a consensus vote.

A chemical reaction decider (CRD) is a tuple

D = (Λ,R,Σ, Υ, φ, s), where (Λ,R) is a CRN, Σ ⊆ Λ
is the set of input species, Υ ⊆ Λ is the set of voters,

φ : Υ → {NO,YES} is the (Boolean) output func-

tion, and s ∈ NΛ\Σ is the initial context. For the in-

put vector x = (x1, . . . , xk) ∈ Nk, where k = |Σ|, we

write the initial state as n(x) = {x1A1, . . . , xkAk}+

s ∈ NΛ whereΣ = {A1, . . . , Ak} are the input species,

and s ∈ NΛ\Σ is the initial context. The initial con-

text represents the molecules (such as a “leader”)

that can be assumed to be initially present indepen-

dent of the input — which may assist in the compu-

tation. We extend φ to a partial function on states

Φ : NΛ → {NO,YES} as follows. Φ(c) is undefined

if either c(X) = 0 for all X ∈ Υ , or if there ex-

ist X0, X1 ∈ Υ such that c(X0) > 0, c(X1) > 0,

φ(X0) = NO and φ(X1) = Y ES. Otherwise, there

exists b ∈ {NO,Y ES} such that (∀X ∈ Υ )(c(X) >

0 implies φ(X) = b); in this case, the output Φ(c) of

state c is b.

A state y is output stable if Φ(y) is defined and,

for all c such that y =⇒ c, Φ(c) = Φ(y). We say that

D stably decides the set X ⊆ Nk, or that D stably

decides the predicate ψX : Nk → {0, 1} defined by

ψX(x) = 1 iff x ∈ X, if, for all x ∈ X, for all c ∈ NΛ
such that n(x) =⇒ c, there exists an output stable

y ∈ NΛ such that c =⇒y and Φ(y) = ψX(x).

Remark 3.3 For simplicity, the examples presented

in Fig. 1 adhere to a different, asymmetric output

convention wherein stabilization to a NO output oc-

curs when every reachable state has no Y (i.e., no

YES voter). It is trivial to convert most of those

examples to the symmetric output convention de-

fined above and used elsewhere in this paper: e.g.,

in Fig. 1(a)-(h), let all species S ∈ Λ \ {Y } vote

NO and add the reactions Y + S → 2Y . In general,

less is known about the asymmetric output conven-

tion than the symmetric one. For example, it is still

not clear whether Theorem 3.5 applies. Remark 4.15

shows that we can nonetheless prove the impossibility

of speed fault free computation of the “2A predicate,”

without an initial context, in the asymmetric case.

Remark 3.4 The above definition of stable decid-

ability may seem weak since it does not actually re-

quire that the CRD will reach the output stable state,

merely that it could from any reachable state. How-

ever, the definition is sufficient for a negative result:

if a CRD does not satisfy it, then there is a reachable

state from which the correct output stable state can-

not be reached, and thus computation is not “deter-

ministic”. Further, our positive result (Section 4.1)

is shown in the stochastic model of chemical kinetics

where this weak definition of stable decidability im-

plies that with probability 1 a correct output stable

state will be reached (since in our construction there

are finitely many distinct states that are reachable

from any initial state). (The examples in Fig. 1, the

examples below, as well as the construction for our

positive result, actually satisfy a stronger combinato-

rial criterion: any sufficiently long reaction sequence

will reach an output stable state.)

The following theorem due to Angluin, Aspnes,

and Eisenstat [2] delineates the computational power

of stable decidability. Recall the definition of semi-

linearity from Section 3.2.

Theorem 3.5 ( [2]) A set is stably decidable by a

CRD if and only if it is semilinear.

Example. The following CRD D = (Λ,R,Σ, Υ, φ, s)

where Λ = {A1, A2, Y,N},Σ = {A1, A2}, Υ = {Y,N},
φ(Y ) = YES, φ(N) = NO, s = {1Y }, and R is the

set of reactions below, stably decides the semilinear

predicate ψ(x1, x2) = 1 iff x1 = x2 (recall that the

set (x1, x2) ∈ N2 where ψ(x1, x2) = 1 is linear, and

therefore semilinear):

A1 +A2 → Y

Y +N → Y

A1 + Y → A1 +N

A2 + Y → A2 +N

The intuition is that the input species A1 and A2

cancel each other, and once either of them runs out

Y can no longer be produced. If any A1 or A2 is
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left over, all Y will eventually be converted to N .

The second reaction ensures that if x1 = x2, and we

are left with a mixture of Y and N , all N degrades.

(Note that this CRD satisfies a strong definition of

stable decidability in that every sufficiently long re-

action sequence eventually reaches the correct out-

put stable state.)

4 Speed fault free CRDs

We first formally define speed fault free CRDs and

then show our main result that speed fault free CRDs

decide exactly the “detection predicates,” i.e., de-

tecting the presence or absence of a species, but not

distinguishing between two different positive counts

of it.

To allow for “parallelization” of the computa-

tion, we introduce a “fuel” species F , whose count

is allowed to start arbitrarily large.12 Increasing the

amount of fuel species is analogous to increasing the

amount of “receptor” in the introduction. We now

formalize the concept of “speed fault free” discussed

informally in the introduction. Briefly, a CRN expe-

riences a speed fault if it reaches a state from which

all paths to a correct output state execute some re-

action when the counts of all of its reactants are

bounded by a constant (a “slow” reaction). Note that

in the stochastic model, the expected time for such

a reaction to occur is bounded below by a constant

(independent of the amount of fuel).

Let f ∈ N, let c ∈ NΛ be a state, and let α ∈ R
be a reaction applicable to c. We say that α oc-

curring in state c is f -fast if at least one reactant

has count at least f in c. An execution sequence

is called f -fast if all reactions in it are f -fast. It is

worth noting that f -fast reaction sequences are not

necessarily fast in the standard sense of stochastic

kinetics (Section 4.1): even if each reaction occurs

quickly, it could be that there are a huge number

of reactions in the sequence. Also it is possible that

an f -fast reaction is actually slower than one that

is not f -fast: e.g., reaction X + Y → . . . with f

copies of X and 1 copy of Y is much slower than

reaction U + V → . . . with f − 1 copies of U and

f − 1 copies of V . However, the expected time of a

reaction that is not f -fast is bounded as a function

of f (unimolecular: at least 1/(f − 1), bimolecular:

at least v/(f−1)2; see Section 4.1) — and that is all

that our negative result relies on. Our positive result

12 Allowing multiple fuel species F1, F2, . . . does not af-
fect our results since one reaction could be F →F1+F2 . . . .

shows not only the existence of desired f -fast paths,

but also that the CRNs stabilize quickly under the

standard stochastic model from any reachable state.

Definition 4.1 A fueled CRD is a 7-tuple D =

(Λ, R, Σ, Υ , F , φ, s), where F ∈ Λ \ Σ is the fuel

species, and (Λ, R, Σ, Υ , φ, s) is a CRD with input

alphabet Σ = (A1, . . . , Ak). For all n, x1, . . . , xk ∈
N let nn(x1, . . . , xk) denote the initial state {nF ,

x1A1, . . ., xkAk} + s. We say D stably computes the

predicate ψ : Nk → {0, 1} if, for all x1, . . . , xk ∈ N
and all n ∈ N, for any state c such that nn(x1,

. . ., xk) =⇒ c, there is an output stable state y with

φ(y) = ψ(x1, . . . , xk) such that c =⇒y. We say D
is speed fault free if, for all x1, . . . , xk ∈ N and all

f ∈ N, for all sufficiently large n, for any state c

such that nn(x1, . . ., xk) =⇒ c, there is an output

stable state y with φ(y) = ψ(x1, . . . , xk) such that

c =⇒y by an f -fast execution sequence.

In other words, from any reachable state, there

is always a sequence of fast reactions that reaches

the correct answer. Note that our definition of speed

fault free decidability naturally parallels the form of

the definition of stable decidability: from any reach-

able state, there is always a sequence of reactions

that reaches the correct answer.

Remark 4.2 The definition of speed-fault free re-

quires the CRD to maintain an f -fast execution se-

quence to the output from any reachable state, even

those reached through a non-f -fast execution sequence.

Our definition is meant to capture the intuitive no-

tion of “fast even in the worst case,” and thus we do

not limit the “adversary” to stay on fast paths. (It is

open whether Lemma 4.18 holds in the case that the

definition of speed-fault free is modified to disallow

the adversary from executing reactions that are not

f -fast.)

Definition 4.3 A set S ⊆ Nk is a simple detec-

tion set if there is a 1 ≤ i ≤ k such that S ={
(x1, . . . , xk) ∈ Nk

∣∣ xi > 0
}
. A set (predicate) is

a detection set (predicate) if it is expressible as a

combination of finite unions, intersections, and com-

plements of simple detection sets.

In other words, a detection predicate is a finite

Boolean combination of questions of the form “is a

certain species present?”. The following theorem is

the main result of this paper. We show each direction

in two separate lemmas, Lemma 4.5 and Lemma 4.18.



10 Ho-Lin Chen et al.

Theorem 4.4 A predicate is stably decidable by a

speed fault free CRD if and only if it is a detection

predicate.

Example. The following CRD D = (Λ,R,Σ, Υ, φ, s)

where Λ = {A1, A2, F , G}, Σ = {A1, A2}, Υ = {A1,

A2, F , X}, φ(A1) = YES, φ(A2) = NO, φ(F ) = NO,

φ(X) = NO, s = {}, and R is the set of reac-

tions below, stably decides the detection predicate

ψ(x1, x2) = 1 iff x1 > 0 and x2 = 0. Further it is

speed fault free.

F +A2 → 2A2

F +A1 → 2A1

F +X → 2X

A2 +A1 → 2X

A2 +X → 2X

A1 +X → 2X

To see that this CRD stably decides ψ, it can

be shown that from any state reachable from the

initial state {x1A1, x2A2, nF}, we can reach one of

four output stable states, depending on which of A1,

A2 were present initially. Indeed, for this CRD any

sufficiently long sequence of reactions reaches one of

these output stable states. These four output stable

states are y0 = {n′F}, y1 = {n′A1}, y2 = {n′A2},
y3 = {n′X}, where n′ = n + x1 + x2 (i.e., n′ is the

total molecular count).13 If x1 > 0 and x2 = 0 then

y1 is reachable (output YES) and the others are not.

Otherwise, if x1 = x2 = 0 then the only reachable

state is y0 (output NO), if x1 = 0 and x2 > 0 then

only y2 is reachable (output NO), if x1 > 1 and

x2 > 1 then only y3 is reachable (output NO).

To see that this CRD is speed fault free, note that

in any reachable state there are n′ molecules (i.e.,

total count is preserved). Since there are 4 species,

at least one of them must be present in count n′/4.

Note that any two species can react. Thus, unless we

are in one of the above output stable states, some

n′/4-fast reaction can happen.

4.1 Positive results: detection predicates are stably

decidable by speed fault free CRDs

In this section we show by construction that any de-

tection predicate can be stably decided by a speed

13 There are other output stable states, for example
{n1F, n2A2} for n1 + n2 = n + x2, but for the purpose
of showing the CRN is speed fault free, it is sufficient to
show that some output stable state is reachable by a fast
path.

fault free CRD. We will also argue that the CRD

is fast under the standard stochastic time model of

chemical kinetics [20]. First, we define this model

(since all rate constants in this paper are 1, we present

a simplified model without rate constants).

Let volume v ∈ R+ represent the size of the

physical system in which the reactions are occur-

ring. Intuitively, the rates of the reactions scale as

the number of ways in which the reacting combina-

tion of molecules can be chosen in the current state.

Further, bimolecular reactions become slower when

diluted in a larger volume. Formally, suppose the

CRD is in state c. The propensity of a unimolec-

ular reaction α : X → . . . in state c is ρ(c, α) =

c(X). The propensity of a bimolecular reaction α :

X + Y → . . ., where X 6= Y , is ρ(c, α) = c(X)c(Y )
v .

The propensity of a bimolecular reaction α : X +

X → . . . is ρ(c, α) = 1
2
c(X)(c(X)−1)

v . The propen-

sity function determines the kinetics of the CRD as

follows. The time until the next reaction occurs is

an exponential random variable with rate ρ(c) =∑
α∈R ρ(c, α) (therefore expected value 1/ρ(c)). The

probability that next reaction will be a particular

αnext is ρ(c,αnext)
ρ(c) . In other words, the system is a

continuous-time, discrete-state Markov process in which

transitions between states correspond to reactions,

with transition rate equal to the reaction propensity.

Lemma 4.5 Every detection predicate is stably de-

cidable by a speed fault free CRD. This CRD takes

expected time O(log(n)/n) expected time to reach an

output stable state under the standard model of stochas-

tic chemical kinetics with constant volume.

Proof Let A1, . . . , Ak be the input species. For each

a ∈ {0, 1}k, let there be species Xa, which will rep-

resent a particular combination of inputs that has

been detected. Then for each a, b ∈ {0, 1}k such that

a 6= b, we have reactions

Xa +Xb → 2Xc

where c is the bit-wise OR of a and b. We identify

X0k with the fuel species F (recall its initial count

is n), and input species Ai with Xa(i) where a(i)

is a vector of all zeros except in the ith position.

Further, letting f : {0, 1}k → {0, 1} describe the

detection predicate, species Xa vote YES if f(a) = 1

and vote NO otherwise. The CRD starts in the state

with exactly the input species and n fuel species X0k .

To analyze this CRD, note that for no further

reactions to be possible, there can be exactly one

species present. The only reachable state where there

is only one species present is y = {n′Xa}, where a
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is the bitwise OR of all the input a(i)’s, and n′ is

the sum of n and the counts of the input molecules

(i.e., n′ is the total molecular count). Note that by

construction this state has the correct output. Since

every reaction instance increases the count of 1’s

of a in some Xa, at most n′k reaction instances

can occur until all n′ molecules become of identi-

cal species. This implies that the CRD stably com-

putes the detection predicate, and indeed satisfies a

stronger combinatorial criterion that all sufficiently

long reaction sequences eventually reach a correct

output stable state.

Further, it is easy to see that from any reachable

state, there is an n′/2k = Ω(n)-fast path to y, and

thus the CRD is speed fault free (k is a constant).

In any reachable state, for some a ∈ {0, 1}k, the

molecular count of Xa is at least n′/2k (since there

are always n′ total molecules). So as long as not all

molecules are of the same species, an (n′/2k)-fast

reaction is possible.

Finally we analyze the expected time to reach y

from any reachable state. If none of the input species

is present then the output is correct at the start.

Otherwise, for any bit i present in the initial state,

let ni(t) be the total count of molecules with bit i

set to 1 at time t. This function is monotone non-

decreasing. In any state with ni(t) = l, the sum of

the propensities of reactions that increase ni(t) is

(n′ − l)l/v regardless of the other bits. Therefore,

the expected time for ni(t) to increase from l to l+1

is less than 2v
n′l if l < n′/2, and at most 2v

(n′−l)n′

if l ≥ n′/2. By linearity of expectation, the total

expected time for ni(t) to go from 1 to n′ is at most:

2v

(∑n′
2 −1

l=1
1
n′l +

∑n′−1

l=n′
2

1
(n′−l)n′

)
= 2v

n′ O(log (n′)).

For constant volume v, and since n′ = O(n) (we

consider increasing the amount of fuel n for fixed

input), this is O(log(n)/n). Finally, because there is

a constant number of bits, the overall time to reach

an output stable state is O(log(n)/n) and we obtain

the statement of the lemma. ut

4.2 Negative results: speed fault free CRDs stably

decide only detection predicates

In this subsection we prove our main negative result,

that speed fault free CRDs can decide only detec-

tion predicates. Subsection 4.2.1 develops a notion

of pumping that allows us to reason about “large

count” species (those that can increase with more

fuel) versus “small count” species (those that are

bounded no matter the amount of fuel). Subsection 4.2.2

shows a way in which reaction sequences could be

decomposed into separate “test-tubes” (parallel de-

composition). Subsection 4.2.3 uses this machinery

to show a simpler result, Lemma 4.14, that leaderless

speed fault free CRDs (those with initial context 0)

stably decide only a limited class of predicates (those

closed under doubling, which contain the detection

predicates but also others such as ψ(x1, x2) = 1

⇐⇒ x1 = x2). In fact, for this class of predicates

and CRDs, our proof shows the stronger conclusion

that, when the answer is (w.l.o.g.) YES, there is a

reachable state x such that every path from x to any

state with positive count of a YES voter is slow.14 To

prove our main theorem, we develop additional tech-

nical machinery in Subsection 4.2.4 showing that cer-

tain fast paths that reduce the count of some species

from “large” to “small” implies that the reactions

obey a certain structure that will be useful for do-

ing “surgery” on paths to slightly alter the count of

those species in a controllable way. Finally, Subsec-

tion 4.2.5 proves our main result, Theorem 4.4.

4.2.1 Pumpable sets of species and Π-friendly paths

This subsection defines “pumpable” sets of species:

species whose counts can be made arbitrarily large

by increasing the amount of fuel (species F , see Def-

inition 4.1) and proves some basic properties about

them. For example, the fuel species {F} is trivially

pumpable. If there is a reaction F+A→F ′+A, then

if there is an A, {F ′} is pumpable, because F ′ can

be arbitrarily large by executing the reaction suf-

ficiently many times. From state {1A,nF}, the set

{F, F ′} is pumpable since one can execute the reac-
tion n/2 times to obtain counts n/2 of F and n/2 of

F ′, and n/2 grows unboundedly with n.

This subsection also introduces the notion of Π-

friendly paths for a subset of species Π ⊆ Λ, which

is essentially (for careful choices of Π) a proxy for

f -fast paths that is easier to work with. Intuitively,

a path is Π-friendly if every reaction in it has at

least one reactant in Π, and thus if Π are the only

pumpable species (i.e., the only species that can get

“large”), then f -fast paths must be Π-friendly. This

notion will feature prominently in our arguments, in

particular as a result of the parallel decomposition

lemma on Π-friendly paths (shown in the next sub-

section). First we use it in this subsection to enforce

14 Our main result, applied to general CRDs deciding a
non-detection predicate, concludes only that every path
from x to a stable YES state is slow.
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a self-consistency of pumping: you can pump without

requiring a reaction where no reactant is pumpable.

This self-consistency will be necessary to ensure that

the entire path we consider is Π-friendly and that

the parallel decomposition lemma of the next sub-

section applies.

For a condition φ : N× N→ {0, 1}, we write for

all u ∈ N, there exists n ∈ N such that φ(n, u) = 1

and n → ∞ as u → ∞ to mean that for all u ∈
N, there exists n(u) ∈ N depending on u such that

φ(n(u), u) = 1 and lim
u→∞

n(u) =∞.
Let N = (nn)n∈N and U = (uu)u∈N be two in-

finite sequences of states, i.e., each nn,uu ∈ NΛ.

(From now on the index specification will be implicit

and we will simply write (nn) instead of (nn)n∈N.)

We write N =⇒U if, for all u ∈ N, there exists n

such that nn =⇒uu, and n→∞ as u→∞.1516

Let Π ⊆ Λ. If a reaction has at least one reac-

tant in Π, say the reaction is Π-friendly. If n =⇒u

via a reaction sequence in which all reactions are Π-

friendly, then we write n =⇒Π u. We writeN =⇒Π U

if, for all u ∈ N, there exists n such that nn =⇒Π uu
and n→∞ as u→∞.

Let N = (n0 ≤ n1 ≤ . . .) be an infinite nonde-

creasing sequence of states. A set of species Π ⊆ Λ

is N -pumpable if there exists a non-decreasing se-

quence of states U = (u0 ≤ u1 ≤ . . . ) such that for

all P ∈ Π and u ∈ N, uu(P ) ≥ u, and N =⇒Π U .

Call U a pumping sequence for Π. Π is maximal N -

pumpable if it is N -pumpable and no strict superset

of Π is N -pumpable.

Example. Consider the sequence N = (nn) de-

fined by nn = {1A,nF} for each n ∈ N, and re-

actions A→ B,A→ C,B + F → 2B,C + F → 2C.

The sets of species {B} and {C} are individually

N -pumpable. Since the presence of B is mutually

exclusive with that of C, the set {B,C} is not N -

pumpable. (However, for initial states N ′ defined by

n′n = {2A,nF}, the set {B,C} is N ′-pumpable.)

Neither {B} nor {C} is maximal N -pumpable, how-

ever, since the states {n2B,
n
2F} and {n2C,

n
2F} are

also reachable from nn: the maximal N -pumpable

sets are thus {B,F} and {C,F}.
First, we observe that any species unbounded in

N (such as F in the previous example) is not only

15 The requirement that n→∞ as u→∞ ensures that
if we consider larger and larger states uu, we can start
from larger and larger states nn to get there.
16 Note that this relation is transitive; in particular, if
N =⇒U =⇒Y for sequences N = (nn), U = (uu), Y =
(yy), then for each y, there is an n such that nn =⇒yy
and n→∞ as y →∞.

trivially N -pumpable, but is contained in any max-

imal N -pumpable set.

Proposition 4.6 Let N be an infinite nondecreas-

ing sequence of states, let Π be maximal N -pumpable

with pumping sequence U , and let Γ ⊆ Λ be the un-

bounded species in N , i.e., for each S ∈ Γ , lim
n→∞

nn(S) =

∞.17 Then Γ ⊆ Π.

Proof Since U is a pumping sequence for Π, for each

u ∈ N, there is an n ∈ N such that nn =⇒Π uu
and uu(S) ≥ u for all S ∈ Π. Define U ′ = (u′u′)

as follows. For each u′, let n′(u′) be the smallest

integer such that for some n < n′(u′), writing p =

nn′(u′) − nn (note p ≥ 0 since N is nondecreasing),

1) nn =⇒Π uu such that u ≥ u′, and 2) p(S) ≥ u′ for

all S ∈ Γ . Then nn′(u′) = nn+p =⇒Π uu+p. Define

u′u′ = uu + p. For all S ∈ Γ , u′u′(S) ≥ p(S) ≥ u′

by (2), and for all S ∈ Π, u′u′(S) ≥ uu ≥ u ≥ u′

by (1); i.e., u′u′(S) ≥ u′ for all S ∈ Γ ∪ Π. Let

Ū = (ūū) be an infinite nondecreasing subsequence

of U ′ (by Lemma 3.2). (Note that reindexing due

to taking a subsequence can only decrease the index

of an element, and thus we still have that for all

S ∈ Γ ∪Π, ūū(S) ≥ ū.) Then Γ ∪Π is N -pumpable

with pumping sequence Ū . Since Π is a maximal

N -pumpable set, this implies Γ ⊆ Π. ut

The previous proposition showed that species al-

ready large before pumping a maximal pumpable set

are necessarily contained in it; the next proposition,

in a sense, goes in the other direction, showing this

for species that can be made large after pumping.

One way to think of this is that pumpable sets can

be naturally “chained.” Suppose Π is maximal N -

pumpable with pumping sequence U , and Ω is U -

pumpable. Then Ω ⊆ Π by the maximality of Π.

Intuitively, this is because by “withholding” suffi-

ciently many copies of species in Π, we can reach a

state in which all species in Π∪Ω are “large,” hence

N -pumpable. The following lemma captures chain-

ing of pumpable sets more generally, allowing for in-

tervening Π-fast reactions (i.e., the paths U =⇒Π Y

below).

Proposition 4.7 Let N,U, Y be infinite nondecreas-

ing sequences of states. Let Π be maximal N -pumpable

with pumping sequence U , and suppose U =⇒Π Y .

Let Ω be Y -pumpable. Then Ω ⊆ Π.

17 Note that since the nn’s are nondecreasing, this im-
plies that lim

n→∞
min
S∈Γ

nn(S) =∞, i.e., all S ∈ Γ are simulta-

neously growing with n.
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Proof We argue that if Ω 6⊆ Π, Π is not maximal

N -pumpable. Let W be a corresponding pumping se-

quence for Ω, and let U = (uu) and W = (ww). By

assumption,N =⇒Π U =⇒Π Y =⇒ΩW . This implies

that for all w ∈ N, there is uw ∈ N (such that uw →
∞ as w →∞) and path pw such that uuw =⇒Π∪Ω

pw ww.

Since U is a pumping sequence for Π, for any u,

for all S ∈ Π, uu(S) ≥ u. Also recall U is nonde-

creasing. Thus by starting with a sufficiently larger

ûw ≥ uw and then taking the same path pw, we can

get uûw =⇒Π∪Ω
pw ŵw, where ŵw ≥ ww, and for all

S ∈ Π, ŵw(S) ≥ w. In other words, by the fact that

W is a pumping sequence for Ω, we had that for all

S ∈ Ω, ww(S) ≥ w, but now we ensure that for all

S ∈ Π ∪ Ω, ŵw(S) ≥ w. Let Ŵ be the sequence of

ŵw constructed in this manner for each w, and let

W̄ = (w̄w) be an infinite nondecreasing subsequence

of Ŵ (by Lemma 3.2). (Note that reindexing due to

taking a subsequence can only decrease the index

of an element, and thus we still have that for all

S ∈ Π ∪Ω, w̄w(S) ≥ w.) Finally, observe that since

we chose ûw ≥ uw and uw → ∞ as w → ∞, we can

conclude that Y =⇒Π∪Ω W̄ . This implies that over-

all N =⇒Π∪Ω W̄ . Thus, Π ∪Ω is N -pumpable with

pumping sequence W̄ . If Ω 6⊆ Π, then this shows

that Π is not maximal N -pumpable. ut

The consequence of pumping a maximal set Π is

that we know that the counts of all other species (not

in Π) are bounded no matter which path we take, as

long as it is Π-friendly or c-fast (for large enough c).

This is captured in following two propositions, first

for Π-friendly, and second for c-fast paths.

Proposition 4.8 Let N be an infinite nondecreas-

ing sequence of states and let Π be maximal N -

pumpable, with pumping sequence U = (uu). Then

there is a bound cU (depending only on U and the

CRN) such that, for all S ∈ Λ \ Π, c ∈ NΛ, and

u ∈ N such that uu =⇒Π c, c(S) < cU .

Proof Fix N as in the statement of the Proposition.

It suffices to consider only one maximal pumpable

set since there are a finite number of them, so fix

a maximal pumpable Π. Let U = (uu) be a pump-

ing sequence for Π, so that N =⇒Π U . Let S ∈ Λ

be any species that can grow arbitrarily large from

U , i.e., (∀c ∈ N)(∃cc ∈ NΛ)(∃u ∈ N) uu =⇒Π cc
and cc(S) ≥ c. Let Y be an infinite nondecreasing

subsequence of (cc), and let Ω = {S}. Then Ω is

Y -pumpable (trivially, with Y as the pumping se-

quence). Since U =⇒Π Y , Proposition 4.7 then im-

plies Ω ⊆ Π, so S ∈ Π. ut

Proposition 4.9 Let N be an infinite nondecreas-

ing sequence of states, and let Π be maximal N -

pumpable, with pumping sequence U = (uu). Let cU
be the bound from Proposition 4.8. For all c ∈ NΛ, if

uu =⇒ c by a cU -fast path p then: (1) p is Π-friendly,

and (2) ∀S ∈ Λ, c(S) ≥ cU implies S ∈ Π.

Proof Conclusion (1) follows by contradiction as fol-

lows. Let α be the first reaction along p that is notΠ-

friendly. Since the state immediately preceding this

reaction is reachable by a Π-friendly path, Proposi-

tion 4.8 tells us that all species S ∈ Λ\Π have count

less than cU . Therefore α occurs when the count of

all its reactants is less than cU , hence it is not cU -

fast, a contradiction. Finally, conclusion (2) follows

from (1) by Proposition 4.8 applied on the entire

path p. ut

Note that the above proposition means that the

only way to get a species outside of Π “large” is by

executing a “slow” reaction (between two reactants

not in Π).

Finally, products of reactions whose reactants are

both maximal pumpable must also be pumpable,

since we can use these reactions to produce a “large”

amount of the product species.

Proposition 4.10 Let N be an infinite nondecreas-

ing sequence of states, and let Π be maximal N -

pumpable. If the CRN contains a reaction with all

reactants in Π, then all products are in Π.

Proof Let α be a reaction with all reactants in Π.

For each u ∈ N, let uu be reachable from some nn
such that uu(S) ≥ u for all S ∈ Π. From state uu ex-

ecute α u/2 times (that may be the maximum num-

ber of times the reaction can execute if it is of the
form X +X→ . . . ). This results in a state in which

all products of the reaction α have count at least u/2.

Since u/2 grows unboundedly, and α is Π-friendly,

Proposition 4.8 establishes that the products are in

Π. ut

We observe that, due to Theorem 3.1, if N is

specially structured to have a constant difference be-

tween adjacent states, there is pumping sequence U

for N that is similarly structured to have constant

difference between adjacent states. This additional

structure on the pumping sequence will prove essen-

tial for proving the Π perturbation claim (Claim 1)

in the main argument.

Lemma 4.11 Let h ∈ NΛ and let N = (nn) be such

that nn+1 = nn + h for all n ∈ N. Let Π be maxi-

mal N -pumpable. Then there is a pumping sequence
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U = (uu) for Π, and d ∈ NΠ where for all S ∈ Π,

d(S) > 0, such that for all u ∈ N, uu + d = uu+1.

Proof Let X = { nn | n ∈ N }. Note that X is semi-

linear (in fact linear). Since Π is N -pumpable, let

U ′ = (u′0 ≤ u′1 ≤ . . .) be any pumping sequence

for Π, so that for each u ∈ N, there is an n such

that nn =⇒Π u′u and u′u(S) ≥ u for all S ∈ Π.

Remove all reactions from our original CRN that

are not Π-friendly to obtain a new CRN CΠ . We

then apply Theorem 3.1 to the new CRN CΠ to ob-

tain the following. There exist b1, . . . ,bl ∈ NΛ and

monoids M1, . . . ,Ml ⊆ NΛ such that postCΠ (X) =⋃l
j=1(bj + Mj). Let u0 > max

1≤j≤l
|bj |. Since u′u0

∈

postCΠ (X), there is a j such that u′u0
∈ bj +Mj .

Let d = u′u0
− bj ; then d ∈ Mj . Note d > 0 by

our choice of u0. Define u0 = u′u0
, and for all u ∈ N,

define uu+1 = uu + d. For all u ∈ N, uu ∈ bj +Mj

because Mj is closed under addition. Thus by the

definition of postCΠ (X), for all u ∈ N, there is an

n ∈ N such that nn =⇒Π uu. Since u′u0
(S) > bj(S)

for all S ∈ Π, d(S) = u′u0
(S)− bj(S) > 0.

For (uu) to be a pumping sequence for Π, we

additionally need n→∞ as u→∞. We can ensure

this without loss of generality as follows: For all u, let

n(u) be an index of N such that nn(u) =⇒Π uu. Note

that for all u ∈ N, nn(u)+u = nn(u) + uh =⇒Π uu +

uh. Thus if n(u) is bounded, we can define d̂ = d+h,

and define a new sequence (ûu) by û0 = u0 and,

for all u ∈ N, ûu+1 = ûu + d̂, so ûu = u0 + ud̂.

For all u ∈ N, defining n̂(u) = n(u) + u, we have

nn̂(u) = nn(u)+u =⇒Π uu+uh = u0 +ud+uh = ûu;

note that n̂(u)→∞ as u→∞.

The requirement that d̂ ∈ NΠ (i.e., that d does

not contain species outside of Π) follows by the max-
imality of Π. We then let d and (uu) in the state-

ment of the lemma be d̂ and (ûu), respectively. ut

4.2.2 Parallel decomposition

Intuitively, the following lemma shows that CRNs re-

acting by Π-friendly reactions can be effectively de-

composed into separate non-interacting “test tubes”

(in the context of a large excess of species inΠ). Note

that in this way Π-friendly bimolecular reactions act

somewhat analogously to unimolecular reactions: if

x + y =⇒ z by a sequence of unimolecular reactions,

then x =⇒ z′ and y =⇒ z′′ such that z′ + z′′ = z.

Using this parallel decomposition lemma we will re-

peatedly argue that if something can happen from

the whole test tube then it could happen from one

of the halves — often arriving at a contradiction.

Lemma 4.12 Suppose x1 + x2 =⇒Π y. Then there

are p,p′,p′′ ∈ NΠ , and y′,y′′ ∈ NΛ such that p +

x1 =⇒Π p′+y′ and p+x2 =⇒Π p′′+y′′, where y′+

y′′ = y and p′ + p′′ = 2p.

Proof First we define two concepts that will be used

in the proof: parallel decomposition and longest par-

allel prefix. For a reaction sequence q applied to a

state x to give x =⇒q y, where x is written as a sum

of two states x1+x2 = x, we say that q has a parallel

decomposition from (x1,x2) if there exists a partition

of q into two disjoint subsequences of reactions (l, r)

such that x1 =⇒l y1, x2 =⇒r y2, and y = y1 + y2.

In other words, if we imagine splitting x into two

“tubes” x1 and x2, then the evolution determined by

the reaction sequence q can be interpreted as hap-

pening entirely within the tubes.

Suppose a reaction sequence p is applicable to

x = x1 + x2, but p does not have a parallel decom-

position from (x1,x2). Then there is a longest prefix

q of p (possibly q is empty) such that q has a paral-

lel decomposition (l, r) from (x1,x2). We call q the

longest parallel prefix of p from (x1,x2). Let (l, r)

be such that x1 =⇒l l and x2 =⇒r r. In other words,

q is the furthest that x1 and x2 can evolve on their

own before the next reaction in p requires a molecule

from l and a molecule from the other r. Therefore

the next reaction must be bimolecular L+R→ . . .,

and it must be the case that, without loss of gener-

ality, l(R) = 0, l(L) > 0 and r(L) = 0, r(R) > 0;

otherwise one of the reaction sequences l or r could

be extended by that reaction while remaining a par-

allel decomposition, and q would not be the longest

prefix of p with a parallel decomposition.

Now we proceed with the proof of the lemma.

Let p be the Π-friendly reaction sequence such that

x1 + x2 =⇒p y. Let pn ∈ NΠ consist of exactly n

molecules of every species in Π. For any pn we can

apply the path p in the context of pn: 2pn + x1 +

x2=⇒p 2pn+y. Let qn be the longest parallel prefix

of p from (pn + x1,pn + x2) and let (ln, rn) be the

parallel decomposition of qn from (pn+x1,pn+x2).

Let ln and rn be such that pn + x1=⇒rn ln and

pn + x2=⇒ln rn.

In the remainder of the proof we will show that

for large enough n, qn = p. Showing qn = p com-

pletes the proof: pn + x1 =⇒ ln by a Π-friendly re-

action sequence and pn + x2 =⇒ rn by a Π-friendly

reaction sequence where ln + rn = y + 2p.

If qn is not all of p then the next reaction in p

after qn must be of the form L + R → . . . where,

without loss of generality, ln(R) = 0, ln(L) > 0
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and rn(L) = 0, rn(R) > 0. Since p is Π-friendly,

at least one reactant L or R is in Π. Now, for the

same p, consider qn+1, the longest parallel prefix of

p from (pn+1 + x1,pn+1 + x2). The following argu-

ment shows that qn+1 must be longer than qn by

at least 1 reaction. Suppose qn+1 = qn. If L ∈ Π

then rn+1(L) = 1, and if R ∈ Π then ln+1(R) = 1.

Since we still have rn+1(R) > 0 and ln+1(L) > 0,

the above reaction from p can occur in either ln+1

or rn+1, contradicting that qn+1 is the longest paral-

lel prefix. Using the base case |q0| ≥ 0, we conclude

that for all n ≥ |p|, qn = p. ut

The following lemma is a key consequence of the

parallel decomposition lemma above. In general, a

YES voter cannot be produced from an output sta-

ble NO state (by definition), while combining two

output stable NO states could lead to the produc-

tion of a YES voter.18 The following, however, es-

tablishes that this path to producing a YES voter

cannot be fast if the output stable NO states come

from a pumping sequence for a maximal pumpable

set.

Lemma 4.13 Let Y be an infinite nondecreasing se-

quence of states, and let Ω be maximal Y -pumpable,

with pumping sequence W = (ww), where all ww

are output stable NO states. Let cW be the bound

from Proposition 4.8 applied to pumping sequence

W . Then for all ww, ww′ , states z and paths p such

that ww + ww′ =⇒p z and z contains a YES voter,

path p is not 2cW -fast.

Proof We consider two possibilities — that p is Ω-

friendly, and that p is not Ω-friendly — and argue

that the first is impossible and that the second im-

plies that p is not 2cW -fast.

If p is Ω-friendly, then by the parallel decomposi-

tion lemma (Lemma 4.12) applied to ww+ww′ =⇒Ω
p z

there are p,p′,p′′ ∈ NΩ , z′, z′′ ∈ NΛ such that

p + ww =⇒p′ + z′ and p + ww′ =⇒p′′ + z′′ and

z′ + z′′ = z. Since z contains a YES voter, z′ or

z′′ must contain a YES voter. Note that for large

enough ŵ, wŵ ≥ p + ww and wŵ ≥ p + ww′ since

species in Ω have count at least ŵ in wŵ. Thus for

large enough ŵ, we can produce a YES voter from

wŵ. Since wŵ is output stable NO by assumption,

this is a contradiction.

Thus we conclude that p is not Ω-friendly. As-

sume p is 2cW -fast. Path p must begin with a (pos-

18 For example, consider the reaction A + A → Y , with
A voting NO and Y voting YES, and consider the states
{1A} and {2A}.

sibly empty) Ω-friendly portion, followed by a re-

action α that is not Ω-friendly. Let x be the state

immediately before this reaction occurs in p. Since p

is 2cW -fast, it must be that x contains count 2cW of

some species S that is not in Ω (otherwise α would

be Ω-friendly). Since the initial portion of p that

leads to x is Ω-friendly, we have ww + ww′ =⇒Ω x

and the parallel decomposition lemma (Lemma 4.12)

applies: there are p,p′,p′′ ∈ NΩ , x′,x′′ ∈ NΛ such

that p + ww =⇒Ω p′+ x′ and p + ww′ =⇒Ω p′′+ x′′

and x′ + x′′ = x. Thus either x′ or x′′ must contain

at least 2cW /2 = cW of S. Since for large enough

ŵ, wŵ ≥ p + ww and wŵ ≥ p + ww′ , starting from

wŵ we can reach a state containing at least cW of

S ∈ Λ \ Ω by an Ω-friendly path. In this we obtain

a contradiction of Proposition 4.8. ut

4.2.3 Simplified proof for leaderless CRDs

In this subsection, we show a simplified version of

our main negative result that speed fault free CRDs

stably decide only detection predicates. Its proof il-

lustrates how the tools developed in previous sub-

sections can be used to show that certain CRDs are

not speed fault free, without requiring the full tech-

nical detail required for our main negative result.

The lemma below shows that leaderless CRDs (those

with initial context 0) that are speed fault free decide

only predicates ψ : Nk → {0, 1} that are closed un-

der doubling, i.e., for all x ∈ Nk, ψ(x) = ψ(2x) (note

all detection predicates are closed under doubling).

The lemma immediately implies that any leaderless

CRD stably deciding the “2A predicate” of Figure 1

(ψ(x) = 1 ⇐⇒ x ≥ 2) is not speed fault free.

Intuitively, the proof of the lemma below involves

splitting the initial state representing 2x into two

equal tubes each representing x such that each tube

reaches an output stable state with no ψ(2x) voters.

Then if the CRD were speed fault free, once the two

tubes are allowed to interact, there should be an f -

fast path to producing a ψ(2x) voter. By initially

choosing more fuel molecules, we should be able to

find such a path for arbitrarily large f . Then we use

Lemma 4.13 which gives an upper bound on how

large f can be, a contradiction.

Lemma 4.14 Let D = (Λ,R,Σ, Υ, F, φ, s) be a fu-

eled CRD with s = 0 stably deciding a predicate

ψ : Nk → {0, 1} such that for some x ∈ Nk, ψ(x) 6=
ψ(2x). Then D is not speed fault free.

Proof Suppose D stably decides ψ. Let x = (x1,

. . ., xk) be as in the statement of the lemma. Define
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N = (nn) for all n ∈ N by nn = nn(x) as in Defini-

tion 4.1; i.e., counts x1, . . . , xk of A1, . . . , Ak, count n

of F , and count 0 of all other species. Since D stably

decides ψ, for each n ∈ N, there is an output sta-

ble state yn such that nn =⇒yn and Φ(yn) = ψ(x);

assume without loss of generality that ψ(x) = 0. De-

fine sequence Y = (yn). Let Ω ⊆ Λ be a maximal

Y -pumpable set of species with pumping sequence

W = (ww).

For each n ∈ N, consider the initial state 2nn =

n2n(2x); this is a valid initial state representing in-

put 2x, for which ψ(2x) 6= ψ(x). By the above argu-

ment, for each w ∈ N, there is an n ∈ N such that

2nn =⇒ 2ww. By the fact that ψ(x) 6= ψ(2x) and the

fact that D stably decides ψ, for each w there is an

output stable state zw such that 2ww =⇒qw zw and

zw contains a YES voter (since each ww is output

stable NO, the state 2ww has no YES voters, and

the CRD must produce one before it can reach an

output stable YES state). By Lemma 4.13, no such

path qw can be 2cW -fast. Recall that N =⇒Y =⇒W

implies that n→∞ (index of N and Y ) as w →∞
(index of W ). Thus, there are infinitely many n such

that from initial state 2nn the CRD can reach to a

state 2ww, from which every path to a correct out-

put stable state is not 2cW -fast, implying D is not

speed fault free. ut

Remark 4.15 Recall that we have defined CRDs to

use the symmetric output convention with both NO

and YES voters, while the examples in the intro-

duction (Fig. 1) adhere to an asymmetric output

convention where YES output is represented by the

presence of Y and NO output is represented by its

absence. In the asymmetric output convention, the

proof above shows that if ψ(x) = 0 while ψ(2x) = 1,
then the CRD is not speed fault free. Thus the above

lemma is sufficient to prove that no speed fault free

CRD, without an initial context, can compute the

“2A predicate” as described in the introduction.

Remark 4.16 Although, Lemma 4.14 states merely

that the CRD is not speed fault free, the proof actu-

ally shows a stronger conclusion. That the CRD is

not speed fault free means that for some input there

are reachable states such that every path to an out-

put stable state is “slow” — i.e., that stabilization

is “slow”. However, the proof shows that there are

reachable states such that every path to the correct

output, stable or not, is “slow” — i.e., convergence

must be slow as well.

In the following sections we work to remove the

restriction to leaderless CRDs and to extend the

above lemma to a larger variety of predicates. Note

that the proof of Lemma 4.14 appeals to Lemma 4.13,

which requires the two states uu,uu′ to be from the

same pumping sequence. This highlights a central

difficulty of extending the above proof to cover a

non-zero initial context. If the initial context con-

tains, for example, a leader (a single copy of a certain

species L), then it must go into one or the other tube

but not both, and the set of pumpable species might

be different depending on the presence or absence of

the leader.

Even without a leader, consider the non-detection

predicate ψ(x1, x2) = 1 ⇐⇒ x1 = x2, which is

closed under doubling since x1 = x2 ⇐⇒ 2x1 =

2x2; we cannot apply the above proof on ψ since the

it requires that ψ not to be closed under doubling.

The remainder of the paper develops the techni-

cal tools needed to handle these difficulties. Though

we still make heavy use of the parallel decomposition

lemma, we apply it to more carefully chosen states.

4.2.4 Reaction ordering lemma

Intuitively, the next lemma states that a “fast” re-

action sequence that decreases certain species from

large counts to small counts must contain reactions

of a certain restricted form. In particular the form

is as follows: if ∆ is the set of species whose counts

decrease from large to small, then we can write the

species in ∆ in some order D1, D2, . . . , Dl, such that

for each 1 ≤ i ≤ l, there is a reaction αi that

consumes Di, and every other species involved in

αi is either not in ∆, or comes later in the order-

ing. These reactions will be used in the proof of the

main result to do controlled “surgery” on fast re-

action sequences, because they give a way to alter

the count of Di by inserting or removing the reac-

tions αi, knowing that this will not affect the counts

of D1, . . . , Di−1. Specifically, the reaction ordering

lemma is key to proving the Π perturbation claim

(Claim 1) in the main argument.

Lemma 4.17 Let c1, c2 ∈ N such that c2 > |Λ| · c1,

let x,y ∈ NΛ such that x =⇒y via c2-fast reac-

tion sequence q. Define ∆ = {D ∈ Λ | x(D) ≥
c2 and y(D) ≤ c1 }. Then there is an order on ∆,

so that we may write ∆ = {D1, D2, . . . , Dl}, such

that, for all i ∈ {1, . . . , l}, there is a reaction αi
of the form Di + S → P1 + . . . + Pk, such that

S, P1, . . . , Pk 6∈ {D1, . . . , Di}, and αi occurs at least
c2−|Λ|·c1
|R| times in q in states c in which c(S) ≥ c2.
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Proof We define the ordering based on increasing

sets ∅ = ∆0 ⊂ ∆1 ⊂ ∆2 ⊂ . . . ∆l−1 ⊂ ∆l = ∆,

where for each 1 ≤ i ≤ l, ∆i \∆i−1 = {Di}.
We define the ordering inductively “in reverse,”

by first defining Dl, then Dl−1, etc. For all 1 ≤ i ≤ l,
define Θi : NΛ → N for all states c by Θi(c) =∑
D∈∆i c(D). Θl is well-defined since ∆l = ∆, and

Θi is well-defined once we have defined Di+1, . . . , Dl,

because ∆i = ∆ \ {Di+1, . . . , Dl}.
Because y(D) ≤ c1 for all D ∈ ∆, it follows that

Θi(y) ≤ i · c1 ≤ |Λ| · c1. Recall that x(D) ≥ c2 for all

D ∈ ∆. Let r be the suffix of q after the last state c′

along q such that Θi(c
′) ≥ c2. Then in all states c in

r (not including c′ itself), c(D) < c2 for all D ∈ ∆i.

Because Θi(c
′) ≥ c2, while Θi(y) ≤ |Λ| ·c1, and c2 >

|Λ| · c1, r must contain a subsequence s of reactions,

each of which strictly decreases Θi, and the total

decrease in Θi over all of s is at least (c2 − |Λ| · c1)

between states c′ and y.

We now examine the form of any reaction in s.

Since every reaction in s strictly decreases Θi, the re-

action must have a reactant in ∆i. Since s is c2-fast,

and all states c along s have c(D) < c2 for D ∈ ∆i,

the reaction cannot be unimolecular since the count

of D is too low for the reaction to be c2-fast. So the

reaction must be bimolecular with the other reac-

tant S having count at least c2. This implies S 6∈ ∆i

(since all D ∈ ∆i have count < c2 between c′ and

y). For the reaction to strictly decrease Θi, all prod-

ucts P 6∈ ∆i (otherwise Θi would either stay equal

or increase after applying the reaction). In fact, this

implies every reaction in s decreases Θi by exactly

1. Since there are at least c2 − |Λ| · c1 instances of

such reactions in s, and there are at most |R| to-

tal types of reactions, by the pigeonhole principle

at least one reaction type must repeat in s at least
c2−|Λ|·c1
|R| times. We call Di the reactant of this reac-

tion that is in ∆i, and continue in the same manner

to define ∆i−1, Di−1, etc. ut

4.2.5 Proof of the full negative result

Throughout this subsection, let D = (Λ, R, Σ, Υ ,

F , φ, s) be an arbitrary speed fault free fueled CRD

with Σ = {A1, . . ., Ak}. Supposing for the sake

of contradiction that D decides some non-detection

predicate ψ : Nk → {0, 1}, then there must exist

some index i (assume without loss of generality that

i = 1), and an input value (x1, x2, . . ., xk) ∈ Nk,

where x1 ≥ 1, such that ψ(x1, x2, . . ., xk) 6= ψ(x1+1,

x2, . . ., xk). Assume without loss of generality that

ψ(x1, x2, . . ., xk) = 0.

Definition of sequence N . For each n ∈ N, write

the initial state of D with answer NO and n copies of

F as nn (= {x1A1, x2A2, . . . , xkAk, nF} + s (where

s is a fixed initial context)). Let N = (n0,n1, . . .) be

the (increasing) sequence of these initial states.

The high level intuition behind our proof is as fol-

lows. First we start with x1 copies of A1 (i.e., infinite

sequence N = (nn) for all n) and pump a maximal

set of species Π (pumping sequence U). Recall that

the input defining all of these has answer NO, but

that a single extra copy of A1 implies that the an-

swer should be YES. By the speed fault free assump-

tion there is an f -fast path, and thus a Π-friendly

path, to output stable NO states Y . Thus the A1

“communicates” with the rest of the CRD only via

perturbations to these high count species Π. The

Π-perturbation claim (Claim 1, proven in Subsec-

tion 4.2.6) relies on the reaction ordering lemma on

fast paths to show that a perturbation on Π can

be effectively “neutralized”. We force an additional

copy of A1 to undergo the same path as a previous

copy, and then neutralize its effect on Π. Then we

force the CRD to go to a state that is contained

in the sum of two output stable NO states from

the same pumping sequence W (for a maximal Y -

pumpable set Ω). Then by Lemma 4.13 we conclude

that the path to producing a YES voter from this

state cannot be fast, a contradiction.

We now formally define these and other infinite

sequences of states and sets of species. For clarity

of exposition we first define U and Y in a more un-

constrained way, but then refine the construction to

satisfy additional constraints in the subsection to fol-

low.

Definition of sequences U , Y , W , and sets Π,

Γ , Ω. Let Π be maximal N -pumpable with pump-

ing sequence U = (uu). Recall that by definition nn
contains n molecules of the fuel species F . Because

every uu is reachable from some nn where n→∞ as

u→∞, if the CRD is speed fault free then each uu
must be able to reach some output stable NO state

by an f -fast path, where f →∞ as u→∞. Consider

only the output stable NO states with f ≥ cU , the

bound from Proposition 4.8, and let Y = (yy) be an

infinite non-decreasing subsequence of these states

(using Lemma 3.2). Let Γ be the species unbounded

in Y (i.e., S ∈ Γ iff (∀c∃y) yy(S) > c). Note by

Proposition 4.9, U =⇒Π Y . Let Ω be maximal Y -

pumpable with pumping sequence W = (ww). By

Proposition 4.7, Ω ⊆ Π.
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By the above definition for all w, there are y,

u, and n such that nn =⇒Π uu =⇒Π yy =⇒Ω ww,

where y depends on w, u depends on y, and n de-

pends on u, where n → ∞ as u, y, or w → ∞. Let-

ting n0 be the index of N corresponding to w0, and

recalling that Ω ⊆ Π, we can write the complete

path as nn0
=⇒Π w0. We can equivalently rewrite

this path as: (nn0 \ {A1}) + {A1}=⇒Π w0. Now

by the parallel decomposition lemma (Lemma 4.12),

there are p,p′ ∈ NΠ and a reaction sequence p

such that p + {A1}=⇒p p′ + w where w ≤ w0 (let-

ting x1 = {A1} and x2 = nn0
\ {A1}). Since U is

a pumping sequence for Π, for all large enough u,

uu ≥ p, and so uu + {A1} ≥ p + {A1}. Thus for all

large enough u, uu + {A1}=⇒p uu + e + w, where

e = p′ − p ∈ ZΠ (because uu + {A1} = (uu − p) +

p + {A1}=⇒p(uu − p) + p′ + w = uu + e + w).

In the subsection to follow we will show that U

and Y can be chosen to satisfy the following “Π-

perturbation” claim. The additional constraints that

must be imposed upon U and Y , and how to satisfy

them, are postponed until the next subsection for

clarity of exposition. The Π-perturbation claim in-

tuitively says that we can absorb a perturbation over

Π, into a perturbation over Γ . Then, the perturbed

yy is still bounded above by some other output sta-

ble NO state yy′ , and thus a YES voter cannot be

reached. We will use this claim to drive the CRD

from uu + e + w to a state from which a YES voter

cannot be reached, a contradiction.

Claim 1 (Π Perturbation Claim) For all e ∈
ZΠ , there is a y0 ∈ N, such that for all y ≥ y0, there

are infinitely many u ∈ N and gu ∈ NΓ such that

uu + e =⇒yy + gu.

The claim implies that for all large enough y,

there are infinitely many u ∈ N and corresponding

gu ∈ NΓ , such that uu + {A1}=⇒yy + gu + w.

Choose y ≥ y0 (constant from Claim 1) and w0 ∈ N
such that yy =⇒ww0

(i.e., find a large enough y

that has a corresponding ww, whose index we will

call w0). Then, for infinitely many u ∈ N, uu +

{A1}=⇒ww0
+ gu + w.

Recall that for all u, uu is reachable from some

nn such that n→∞ as u→∞. Recall nn contains

n fuel molecules F , and that initial state nn + {A1}
should result in answer YES. Thus, assuming the

CRD is speed fault free, there must be an f -fast

path ww0
+ gu + w =⇒qu zu where zu contains a

YES voter, and f → ∞ as u → ∞. Choose u large

enough that f ≥ 2cW , where cW is the bound from

Proposition 4.8 applied on the maximal Y -pumpable

set Ω with pumping sequence W . Next, observe that

Γ ⊆ Ω; this follows by Proposition 4.6 taking (left

side variables referring to the statement of the propo-

sition and right side variables referring to defini-

tions in the present context) Π = Ω, N = Y , and

W = U . Thus gu ∈ NΩ . To summarize the above,

ww0
+gu+w =⇒qu zu where zu contains a YES voter

and qu is 2cW -fast, and gu ∈ NΩ .

Recall that W = (ww) is a pumping sequence for

Ω and thus it is nondecreasing, and ww contains at

least count w of all species in Ω. Then, since gu ∈
NΩ , we can find a large enough ŵ such that wŵ ≥
ww0

+gu. Further recall that w0 ≥ w. Thus applying

path qu to wŵ + w0 leads to a superset of zu. In

other words, we can produce a YES voter from wŵ+

w0 via a 2cW -fast path. Recall that all states in W

are output stable NO (since they are reachable from

Y ). Thus we obtain a contradiction by Lemma 4.13

with the maximal Y -pumpable set Ω and pumping

sequence W .

Since we assumed at the start of the subsection

that D was an arbitrary speed fault free CRD de-

ciding a non-detection predicate, this contradiction

implies the main technical result of this paper, which

together with Lemma 4.5 implies our main theorem,

Theorem 4.4.

Lemma 4.18 Speed-fault free CRDs decide only de-

tection predicates.

4.2.6 Proving the Π perturbation claim (Claim 1)

First we prove an intermediate lemma that will be

useful in proving Claim 1. Intuitively, it shows that

the path uu =⇒yy can be modified to convert a pos-

itive or negative “perturbation” of the large count

species in U (e ∈ ZΠ) to a perturbation of the large

count species in Y (eΓ ∈ ZΓ ). However, the modi-

fied path is only valid in the “context” of an excess

amount of species in Π (i.e., p ∈ NΠ).

Lemma 4.19 Let N be an infinite nondecreasing

sequence of states, and let Π be maximal N -pumpable,

with pumping sequence U = (uu). Let Y be an in-

finite sequence of states such that for all y ∈ N,

uu =⇒yy by an f -fast path, and u, f → ∞ as y →
∞. Let Γ be the set of species unbounded in Y . Then

for any e ∈ ZΠ , there is p ∈ NΠ , eΓ ∈ ZΓ and there

is a y0 ∈ N, such that for all y ≥ y0, p + uu +

e =⇒p + yy + eΓ .

Proof For any y, there is u and an f -fast path p

such that uu =⇒p yy and u, f → ∞ as y → ∞. Let
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c1 be the largest count of any species not in Γ in

the sequence Y . Apply the reaction ordering lemma

(Lemma 4.17) on path p for large enough y such that

c2 = min{u, f} satisfies c2 > |Λ| · c1 and c2 ≥ cU ,

where cU is the bound from Proposition 4.8.

Recall (uu) is a pumping sequence for maximal

Π and thus for all S ∈ Π, uu(S) ≥ u, while all

other species are bounded (by Proposition 4.8). So

for large enough c2 (obtained from a large enough

y), since c2 ≤ u, ∀S ∈ Π, uu(S) ≥ c2 while ∀S ∈
Λ \ Π, uu(S) < c2. This implies that Π \ Γ =

{ D ∈ Λ | uu(D) ≥ c2 and yy(D) ≤ c1 }. Define∆ =

Π \ Γ.
Using the reaction ordering lemma, we can write

∆ = {D1, . . . , Dl}, such that for each 1 ≤ i ≤ l,

there is a bimolecular reaction αi with the following

properties. (That properties (2) and (3) follow from

the reaction ordering lemma is shown below.) (1) Di

is a reactant. (2) All products are either elements of

Γ , or are Dj for j > i. (3) The other reactant (S)

is either an element of Γ , or is Dj for j > i. (4) αi
occurs at least (c2 − |Λ| · c1)/|R| times in p.

Property (3) can be shown as follows. By Propo-

sition 4.9, the other reactant S must be in Π because

Π is maximal pumpable and the count of S is at least

c2 (by the reaction ordering lemma) which is at least

cU (the bound of Proposition 4.8, by construction of

c2). Since S is not one of D1, . . . , Di by the reaction

ordering lemma, it must be either in Γ or Dj for

j > i. Property (2) follows using Proposition 4.10

since both reactants are in Π as just established.

We now describe how to modify the reaction se-

quence p by inserting or removing the above reac-

tions to get rid of the ∆ component of e. How-

ever, as a result of the modification, if we simply

start in un + e, we may not be able to complete the

modified path p because some species in Π might

go negative. However, for large enough p ∈ NΠ ,

p + uu + e =⇒p + yy + eΓ where eΓ ∈ ZΓ .

We iteratively fix the counts of species in ∆ one

by one, in the ordering given, i.e., we first adjust p to

fix D1, then we fix D2 (while showing that the fixing

of D2 cannot affect the count of D1 in any state, so

it remains fixed), etc. We start with e0 = e. Having

fixed D1, . . . , Di−1, and obtaining new ei−1 ∈ ZΠ
such that ei−1 is zero on D1, . . . , Di−1, we process

Di as follows. If δi = ei−1(Di) > 0: add δi instances

of reaction αi at the end of the reaction sequence. If

δi < 0: remove δi instances of αi where they occur

in the reaction sequence; property (4) ensures that p

contains enough instances of αi (see below). In this

way we obtain ei. By property (2) and (3), adding

or removing instances of αi affects only the counts

of species in Γ and Di+1, . . . , Dl. Since we fix these

counts in the prescribed order, when we are done, the

counts of each Di is zero in eΓ = ek, while the counts

of elements of Γ may have been altered (upward or

downward). Note that as we fix Di by adding or

removing αi, we are affecting the counts of Dj for

j > i and Γ . Although the counts of Dj for j >

i are compensated later, they may temporarily dip

below zero had we not added a large enough p ∈ NΠ .

Further, counts of Γ are never fixed, and thus p must

be large enough that p + yy + eΓ is non-negative on

Γ .

Finally, we derive a bound on the number of re-

action instances that we may need to remove, which

places a bound on c2 to ensure that there are enough

instances by property (4) above.

Bound on the amount of fixing: Let cb = |e|,
and let cs be the maximum stoichiometric coefficient

(which bounds the amount that species can change

each time the reaction is added or removed). We add

or remove at most |δ1| ≤ cb instances of α1, which

affects the count of D2, . . . , Dl and species in Γ by

at most cbcs. Thus, |δ2| ≤ cb+|δ1|cs ≤ cb(1+cs) (the

original cb error plus the additional error from alter-

ing the number of α1 reactions). In general, |δi| ≤
cb + (|δ1| + · · · + |δi−1|)cs ≤ (1 + cs)

i−1cb. Thus if

we let c2 ≥ |Λ| · c1 + (1 + cs)
l−1cb|R| (where l = |∆|

is the upper bound on i), we will have enough re-

action instances by property (4) to remove (since

(c2 − |Λ| · c1)/|R| ≥ (1 + cs)
l−1cb). Note that this

bound, and thus the values of p and eΓ , depend only

on e. Since c2 = min{u, f} and u, f are arbitrarily

large, we can achieve a sufficiently large value of c2.

ut

In order to prove Claim 1, we need to be more

deliberate in constructing sequences U = (uu) and

Y = (yy), such that two additional constraints are

satisfied. Intuitively, these constraints give a way to

repeatedly convert some amount of Π species into

some amount of Γ species without changing any-

thing else. Eventually these constraints will allow us

to replace p+uu in Lemma 4.19 with uu′ for a larger

index u′, and ensure that the excess of species in Π

can be consumed after Lemma 4.19 is applied.

Recall Γ is the set of species that grow unbounded

in sequence Y .

Constraint 1. There are u ∈ NΛ and d ∈ NΠ where

∀S ∈ Π, d(S) > 0, such that uu = u + ud.

Constraint 2. There are y1, k, and g ∈ NΓ where

∀S ∈ Γ,g(S) > 0, such that yy1 + kd =⇒yy1 + g.
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Refined construction of sequences U and Y .

U can be constructed to satisfy constraint (1) by

following Lemma 4.11 with h = {1F} (since nn+1 =

nn + {1F} by construction). To satisfy constraint

(2) we construct sequence Y as follows. First infinite

sequence Y ′ is constructed inductively: Let y′0 be

some output stable NO state reached from u0. Let y′y
be an output stable NO state reached from y′y−1 +d

(call this path py). Since y′y−1 + d is reachable from

uy, which in turn is reachable from some nn such

that n→∞ as y →∞, we can ensure that paths py
are f -fast such that f →∞ as y →∞ (assuming the

CRD is speed fault free). Finally, let Y = (yy) be an

infinite non-decreasing subsequence of Y ′ (invoking

Lemma 3.2) restricted to the states y′y for which py
is at least cU -fast for bound cU from Proposition 4.8

(for the U constructed above).

We now show that Y constructed in this manner

satisfies constraint (2). There must be yy0 and yy1
in Y such that for all species S ∈ Λ \ Γ , yy0(S) =

yy1(S), and for all species S ∈ Γ , yy0(S) < yy1(S).

Then observe that for some k, yy0 + kd =⇒yy1 =

yy0 + g where g = yy1 −yy0 ∈ NΓ , which is positive

over all of Γ .

With the two additional constraints on U = (uu)

and Y = (yy) described above we are able to prove

the Π-perturbation claim used in the previous sub-

section.

Claim 1. (Π Perturbation Claim) For all e ∈
ZΠ , there is a y0 ∈ N, such that for all y ≥ y0,

there are infinitely many u ∈ N and gu ∈ NΓ such

that uu + e =⇒yy + gu.

Proof Given, any e ∈ ZΠ , let y be at least as large as

y0 from Lemma 4.19 and y1 from constraint (2). By

Lemma 4.19, there is u′ and p ∈ NΠ , eΓ ∈ ZΓ such

that p + uu′ + e =⇒p′ p + yy + eΓ . Suppose that

instead of p + uu′ + e, using the constant k from

constraint (2), we let u = u′+ku′′ for some u′′ to be

chosen later, and start with uu+e = ku′′d+uu′ +e

(by constraint (1)) such that ku′′d ≥ p (which is

true for large enough u′′). Then by the same path p′

we have: ku′′d + uu′ + e =⇒p′ ku
′′d + yy + eΓ .

Let r be the path described in constraint (2). We

want to use this path u′′ times to convert ku′′d ∈ NΠ
to u′′g ∈ NΓ starting from ku′′d + yy + eΓ . But

eΓ ∈ ZΓ can be negative — how can we be sure

that we don’t go below zero when taking r multiple

times? We use the following argument, which de-

pends on making u′′ large enough as a function of

eΓ : In the first u′′/2 applications of path r we rely

on the remaining (ku′′/2)d to remain non-negative.

Then, in the second u′′/2 applications of r, we rely

on the (u′′/2)g produced in the first half to remain

non-negative. More precisely, for large enough u′′,

(ku′′/2)d + eΓ ≥ 0, and so we can take the path

ku′′d+yy +eΓ =⇒(ku′′/2)d+yy +(u′′/2)g+eΓ by

repeating path r u′′/2 times. Here, g ∈ NΓ such that

∀S ∈ Γ,g(S) > 0. Thus, (u′′/2)g can be arbitrarily

large on Γ if we use a large enough u′′. Therefore,

for sufficiently large u′′, (u′′/2)g + eΓ ≥ 0. Then, by

taking path r another u′′/2 times, (ku′′/2)d + yy +

(u′′/2)g + eΓ =⇒(u′′/2)g + yy + (u′′/2)g + eΓ =

yy+u′′g+eΓ . We obtain the statement of the claim

with u = u′ + ku′′ for all large enough u′′, and

gu = u′′g + eΓ ∈ NΓ . ut
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