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Abstract. Typical DNA storage schemes do not allow in-memory com-
putation, and instead transformation of the stored data requires DNA
sequencing, electronic computation of the transformation, followed by
synthesizing new DNA. In contrast we propose a model of in-memory
computation that avoids the time consuming and expensive sequencing
and synthesis steps, with computation carried out by DNA strand dis-
placement. We demonstrate the flexibility of our approach by developing
schemes for massively parallel binary counting and elementary cellular
automaton Rule 110 computation.
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1 Introduction

Studies have espoused DNA as an incredibly dense (up to 455 exabytes per gram)
and stable (readable over millenia) digital storage medium [5]. Experiments stor-
ing text, images, and movies of hundreds of megabytes have demonstrated the
potential scalability of the approach [11]. Importantly, DNA’s essential biologi-
cal role ensures that the technology for manipulating DNA will never succumb
to obsolescence.

Typical DNA storage schemes have high information density but do not
permit “in-memory” computation: modifying data involves sequencing DNA,
classically computing the desired transformation, and synthesizing new DNA.
In contrast, strand displacement systems store information in the pattern of
reconfiguration of exposed single-stranded regions. This pattern can be directly
manipulated through toehold exchange and other molecular primitives as a form
of information processing [25]. However, strand displacement is incompatible
with traditional DNA storage schemes.

Here we combine DNA storage with massively parallel computation on the
data stored using strand displacement. In our proposed scheme, which we call
SIMD||DNA (Single Instruction Multiple Data DNA), a multi-stranded DNA
complex acts as a single register storing a (binary) string. Although all the
complexes share the same sequence, different information is encoded in each
complex in the pattern of nicks and exposed single-stranded regions. There are



as many independent registers as the number of molecules of the multi-stranded
complexes, each capable of storing and manipulating a different string. This
allows information in different registers to be modified at the same time, utilizing
the parallelism granted by molecular computation.

Our method of storing information in DNA is motivated by recent develop-
ments in DNA storage employing topological modifications of DNA to encode
data. DNA storage based on programmable nicking on native DNA (forming
strand breaks at desired locations) permits high throughput methods of writing
information into registers [20]. To enable subsequent read-out, recently devel-
oped methods [9] could potentially read information encoded in nicks and single-
stranded gaps in double stranded DNA in a high throughput manner. Reading
out specific bits of registers could also be achieved with fluorescence based meth-
ods. Note that compared with storing data in the DNA sequence itself, encoding
data in nicks sacrifices data density but reduces the cost of large-scale synthesis
of DNA [20]. Here we show that it also enables greater flexibility of in-memory
computation.

To do parallel in-memory computation on our DNA registers, we employ sin-
gle instruction, multiple data (SIMD)1 programs. An overview of a program’s
implementation is given in Figure 1. Each instruction of a program corresponds
to the addition of a set of DNA strands to the solution. The added strands un-
dergo toehold-mediated strand displacement with strands bound to the register,
changing the data. The long “bottom” strands of these registers are attached
to magnetic beads, allowing sequential elution operations. After the strands dis-
placed from the registers are eluted, subsequent instructions can be performed.
Note that the same instruction is applied to all registers in solution in paral-
lel (since they share sequence space), but the effect of that instruction can be
different depending on the pattern of nicks and exposed regions of the given
register.

We show that our DNA data processing scheme is capable of parallel, in-
memory computation, eliminating the need for sequencing and synthesizing new
DNA on each data update. Note that instruction strands are synthesized inde-
pendently of the data stored in the registers, so that executing an instruction
does not require reading the data. We should also note the doubly-parallel na-
ture of SIMD||DNA programs: instructions act on all registers in parallel, and
instruction strands can act on multiple sites within a register in parallel.

Our programs require a small number of unique domains (subsequences of
nucleotides which act as functional units), independent of the register length.

1 Single instruction, multiple data (SIMD) is one of the four classifications in Flynn’s
taxonomy [7]. The taxonomy captures computer architecture designs and their par-
allelism. The four classifications are the four choices of combining single instruction
(SI) or multiple instruction (MI) with single data (SD) or multiple data (MD). SI
versus MI captures the number of processors/instructions modifying the data at a
given time. SD versus MD captures the number of data registers being modified at
a given time, each of which can store different information. Our scheme falls un-
der SIMD, since many registers, each with different data, are affected by the same
instruction.
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Fig. 1: Each DNA register is a multi-stranded complex. Different information is en-
coded in the pattern of nicks and exposed single-stranded regions in the register. Reg-
isters are attached to magnetic beads (MB). To perform each instruction, first a set of
instruction strands is added to the solution and reacts with all the registers in parallel.
Then waste species (unreacted instruction strands and displaced reaction products)
are washed away by elution.

A common assumption for correctness in strand displacement systems is that
domains are orthogonal, meaning two domains which are not fully complemen-
tary do not bind. In experiments, enforcing this assumption requires specialized
sequence design. Further, for any fixed domain length, the space of orthogonal
domains is limited, restricting the scalability of the system. SIMD||DNA encodes
information in the pattern of nicks and exposed domains. This allows our pro-
grams to require only a constant set of orthogonal domains to be used (five for
one program and six for the other), simplifying the sequence design problem
for experimental implementation. In addition, the instruction strands for one
instruction can share sequences, resulting in a reduced cost of strand synthesis.

In this paper, we show two SIMD||DNA programs. One of the programs
implements binary counting. Starting from arbitrary initial counts stored in dif-
ferent registers, each computation step increments all the registers in parallel.
Binary counting allows one SIMD||DNA program to move data through a num-
ber of states exponential in the size of the register. We consider this a requirement
of any useful data storage/computation suite: if instead not all configurations
of the register were reachable from some initial configuration via some program,
then the useful density of the storage would be reduced.

In addition to binary counting, we also give a program which simulates el-
ementary cellular automaton (CA) Rule 110.2 Critically, Rule 110 has been

2 In [24] an enumeration of all possible rules for elementary CA is given. Rule 110
refers to that enumeration.



shown to be Turing universal [6], so this simulation shows that SIMD||DNA’s
in-memory computation model is as powerful as any other space-bounded com-
puting technique. In other words, our space-bounded simulation of Rule 110
immediately gives that any computable function—if the required space is known
beforehand—can be computed by a SIMD||DNA program.

We note the contrast to typical strand displacement schemes that perform
a single computation in solution. For example, although a logic circuit [18, 13]
computation might involve hundreds of billions of separate molecules, the re-
dundancy does not help computationally. Such schemes seem to not use the
massively parallel power of chemistry [1]. Previous ideas for performing paral-
lel computation with strand displacement cascades relied on a complex scheme
involving 4-way branch migration on DNA origami [14] or information process-
ing in different spatial locations [17]. Turing universal computation with strand
displacement could not handle multiple independent computations running in
parallel [12], leaving the extension to parallel computation as the major open
question.

Note that SIMD||DNA is non-autonomous since each instruction requires
manual strand addition and elution. In this regard it is similar to early stud-
ies of parallel DNA computing machines. Dating back to the 1990s, Adleman
experimentally demonstrated solving instances of NP-complete problems using
DNA [1], which encouraged other DNA computing models. Many models rely
on enzymes to introduce covalent modification on DNA [2, 3, 8, 15], which in-
creases experimental complexity. Other enzyme-free models such as the sticker
model [16] encode information in the pattern of exposed domains, similar to
our scheme. However, the sticker model requires a number of orthogonal domain
types that scales with the amount of data. In addition, these domains require
well-tuned binding affinities to allow a melting procedure which selectively dis-
sociates some strands but not others. In contrast, our programs only require
a constant number of unique domains for any register length. Instead of com-
putation through controlled hybridization and melting, strand displacement is
a more versatile mechanism to achieve modification of information, potentially
making parallel molecular computation more feasible.3

2 SIMD||DNA

Here we propose the general scheme. First we will explain the notations we use
in this paper. We use the domain level abstraction for DNA strands. Consecutive
nucleotides that act as a functional unit are called a domain. Complementary
domains are represented by a star (∗). The length of the domains is chosen so
that: (1) each domain can initiate strand displacement (can act as a toehold), (2)

3 In a sense, we realize an extension of the sticker model envisioned by [4]: “Recent
research suggests that DNA ‘strand invasion’ might provide a means for the specific
removal of stickers from library strands. This could give rise to library strands that
act as very powerful read-write memories. Further investigation of this possibility
seems worthwhile.”



strands bound by a single domain readily dissociate, and (3) strands bound by
two or more domains cannot dissociate.4 We call an exposed (unbound) domain
a toehold.

2.1 Encoding data

Data is stored in multi-stranded complexes (Figure 1), each called a register. A
register contains one long strand, called the bottom strand and multiple short
strands, called top strands, bound to the bottom strand. Each bottom strand
is partitioned into sets of consecutive domains called cells. Each cell contains
the same number of domains. Depending on the configuration of the top strands
bound (e.g., their lengths, or the presence or absence of toeholds), cells encode
information. In this work we use a binary encoding, with each cell representing
one bit.

See Section 4.1 for a discussion of potential experimental methods of prepar-
ing the initial registers.

2.2 Instructions

An instruction is a set of strands. To apply an instruction to the data, these
strands are added to the solution at high concentration. Adding these strands can
lead to three different types of reactions on the registers. Figure 2a explains the
figure notation used to describe instructions throughout the paper, and Figure 2b
gives examples of the three types of reactions. They are:

Attachment: This reaction preserves all the strands originally bound to the
register and attaches new strands. An instruction strand can attach to registers if
it binds strongly enough (by two or more domains). Note that the attachment of
an instruction strand can lead to a partial displacement of a pre-existing strand
on the register.

Displacement: This reaction introduces new strands to the register and
detaches some pre-existing strands. Upon binding to a toehold on the register,
the instruction strand displaces pre-existing strands through 3-way branch mi-
gration.5 Toehold exchange reactions are favored towards displacement by the
instruction strand since they are added at high concentration. Two instruction
strands can also cooperatively displace strands on the register.

Detachment: This reaction detaches pre-existing strands without introduc-
ing new strands to the registers. An instruction strand that is complementary to
a pre-existing strand with an open overhang can use the overhang as a toehold
and pull the strand off the register. Throughout this paper, a dashed instruction

4 Given these properties, in practice one could choose the domain length to be from
5 to 7 nucleotides at room temperature.

5 Although other more complicated strand displacement mechanisms (e.g. 4-way, re-
mote toehold, associative toehold strand displacement) could provide extra power in
this architecture, they usually sacrifice the speed and increase the design complexity,
so we do not include them in this work.



strand indicates the domains in the instruction strand are complementary to
other vertically aligned domains.

When an instruction strand displaces a top strand, we assume the waste top
strand does not interact further within the system (the instruction strands are
present in high concentration while the waste is in low concentration). After
the reactions complete, the waste is removed via elution. We assume washing
removes all species without a magnetic bead. Lastly, we assume there is no
leak—displacement of a strand without prior binding of a toehold. We discuss
the possibility and extent of errors caused by relaxing these assumptions in
Section 4.2.

In general, two reactions can be applicable but mutually exclusive. Then two
(or more) resulting register states may be possible after adding the instruction
strands. The instructions used in this paper do not have this issue. This point
is related to deterministic versus nondeterministic algorithms, and is discussed
further in Section 4.5.

2.3 Programs

We consider sequences of instructions, called programs. We design programs for
functions f : {0, 1}n → {0, 1}n so that, given a register encoding any s = {0, 1}n,
after applying all instructions in the program sequentially as in Figure 1, the
resulting register encodes f(s).

3 Programs for binary counting and Rule 110

Here we give our two programs: binary counting and simulation of elementary
cellular automaton Rule 110. We first present the Rule 110 simulation, as the
program is simpler to explain than binary counting.

3.1 Cellular Automaton Rule 110

An elementary one-dimensional cellular automaton consists of an infinite set of
cells {. . . , c−1, c0, c1, . . .}. Each cell is in one of two states, 0 or 1. Each cell
changes state in each timestep depending on its left and right neighbor’s states.
Rule 110 is defined as follows: the state of a cell at time t+ 1, denoted ci(t+ 1),
is f(ci−1(t), ci(t), ci+1(t)), where f is the following:

f(0, 0, 0) = 0

f(0, 0, 1) = 1

f(0, 1, 0) = 1

f(0, 1, 1) = 1

f(1, 0, 0) = 0

f(1, 0, 1) = 1

f(1, 1, 0) = 1

f(1, 1, 1) = 0

Note that a simple two-rule characterization of f is as follows: 0 updates to 1 if
and only if the state to its right is a 1, and 1 updates to 0 if and only if both
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Fig. 2: (a) The notation used to describe instructions. Domains are represented by
square boxes. We indicate complementarity of instruction strands to register domains
by vertical alignment. If a domain label is given explicitly, such as a and a∗ in this
figure, the domain is orthogonal to the other vertically aligned domains. A strand
can be described by listing the constituent domains in a bracket <> from 5’-end to
3’-end. Strands with solid lines are complementary to the corresponding domains in
the bottom strand. Strands with dashed lines are complementary to the corresponding
domains in the top strand. The blue dot represents the magnetic bead. (b) The three
instruction reactions. Attachment: instruction strands attach to the register without
releasing any other strands. Displacement: instruction strands attach to the register
and displace pre-existing strands on the register. Toehold-mediated strand displace-
ment (left), toehold-exchange strand displacement (right), and cooperative strand dis-
placement (bottom) mechanisms are allowed. Detachment: instruction strands fully
complementary to previously bound top strands pull strands off the register.



neighbors are 1. This characterization is useful for proving correctness of the
program.

The instructions implementing one timestep evolution are shown in Figure 3.
Each state-0 cell is fully covered by two strands, one of length three and one of
length two. Each state-1 cell is partially covered by a length-five top strand
and has an open toehold at the leftmost domain. The program consists of six
instructions. The program first marks the string “01” (Instruction 1)—here, the 0
will change to 1 later. Then it erases the internal 1’s in any string of at least three
consecutive 1’s (Instructions 2 and 3). These are the 1’s with two neighboring
1’s, which should be updated to 0, so the program fills in the empty cells with 0
(Instruction 4). Finally it removes the markers from Instruction 1 and changes
previously marked 0’s to 1’s (Instructions 5 and 6).

We claim that this program enforces the two-rule characterization of Rule
110. We first argue that 1 updates to 0 if and only if both neighbors are 1. Then
we argue that 0 updates to 1 if and only if the state to its right is a 1. Let ik
denote the kth domain on cell i (from left to right). All cells can share the same
sequences, but we assume that each domain within a cell is orthogonal.

Claim. A cell i initially in state 1 updates to a 0 if cells i + 1 and i − 1 are
initially 1.

Proof. During Instruction 1, the instruction strands cannot displace the strands
in state-1 cells. In Instruction 2, the strand on cell i is displaced cooperatively
only if the toeholds on both the left and the right side of the strand are open.
By assumption, cell i + 1 is a 1, so the toehold immediately to the right of
cell i, (i + 1)1, is free. Since cell i − 1 is in state 1, domain i1 is not covered
after Instruction 1 (i1 would be covered if cell i − 1 were 0). Thus the strand
on cell i can be displaced by the instruction 2 strands. In Instruction 3, the
instruction 2 strands in cell i are detached, so every domain in cell i is free. Then
in Instruction 4 we attach the strands corresponding to a state 0, updating cell
i to 0. Instructions 5 and 6 do not introduce any instruction reaction on cell i,
so cell i remains in state 0.

Claim. A cell i initially in state 1 stays in state 1 if either cell i + 1 or i − 1 is
initially 0.

Proof. During Instruction 1, the instruction strands cannot displace the strands
in state-1 cells. In Instruction 2, the strand on state-1 cells is displaced cooper-
atively only if the toeholds on both the left and the right side of the strand are
open. By assumption that the left or right cell is a 0, the toeholds required for
this, i1 or (i + 1)1, will be covered: First consider that cell i − 1 is a 0. Then
in Instruction 1, the instruction strand displaces one strand at cell i − 1 and
covers the toehold i1. On the other hand, if cell i + 1 is 0, then domain (i + 1)1
is covered since strands for the 0 state cover all the domains in that cell. So if
either neighbor state is 0, Instruction 2 does not displace the strand on cell i.
Then note that Instructions 3 and 4 do not introduce any instruction reaction
at cell i. The instruction 5 strands detach the instruction 1 strands if cell i− 1
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Fig. 3: The program implementing one timestep of Rule 110 shown on an example
register. The top register shows the initial state of each cell. After 6 instructions, the
register updates to the state shown at the bottom. Strand colors have three information
categories: state 1 (dark blue), state 0 (light blue), intermediates (other colors). Solid
boxes show the instruction strands and the state of the register before the strands are
applied. Dashed boxes explain the logical meaning of the instructions. The overhang
domains a and b are orthogonal to their vertically aligned domains.



is 0, freeing the toehold at i1 and recovering the state-1 cell. Instruction 6 does
not change the state-1 cell.

Claim. A cell i initially in state 0 updates to a 1 if cell i + 1 is initially a 1.

Proof. Since cell i + 1 is in state 1, the toehold at domain (i + 1)1 is available
for the instruction strand in Instruction 1 to bind, and the rightmost strand on
cell i is displaced. Then note that Instructions 2 through 4 do not introduce
any instruction reaction at cell i. In Instruction 5, the instruction strand from
Instruction 1 is detached, freeing domains i4 and i5. In Instruction 6 the instruc-
tion strand binds at domains i4 and i5 and displaces the strand at cell i. So after
Instruction 6, cell i is in state 1.

Claim. A cell i initially in state 0 stays in state 0 if cell i + 1 is initially a 0.

Proof. Simply note that for any instruction, no instruction reaction on cell i
occurs. So cell i stays in state 0.

These four claims combined verify that the two-rule characterization given
at the beginning of this section is satisfied, so the instructions implement one
timestep evolution of Rule 110.

Note that the Rule 110 simulation invokes two sources of parallelism. In-
struction strands are applied to all registers in parallel, and every cell within a
register can update concurrently.

Also note that Rule 110 is defined only for an infinite set of cells or a circular
arrangement of finitely many cells. For a finite set of cells arranged linearly, one
must define boundary conditions for updating the leftmost and rightmost cells.
Boundary conditions can be constant or periodic. For space-bounded computa-
tion by Rule 110, it suffices to set periodic boundary conditions based on the
periodic initial condition of the CA given in [6]. These periodic boundary states
can be implemented by periodic instructions.

3.2 Counting

The counting program computes f(s) = s + 1. Binary counting is captured by
changing all the 1s to 0 from the least significant bit to more significant bits
until the first 0, and changing that 0 to 1. All the bits more significant than the
rightmost 0 remain the same. For example, f(1011) = 1100, and f(1000) = 1001.
In the case of overflow, we rewrite the register to all 0s. In other words, on inputs
of all 1s, we output all 0s: f(1111) = f(0000).

The full program is in Figure 4. Each state-0 cell is fully covered by two
strands, with one covering the first three domains and the other one covering
the last two domains. Each state-1 cell is fully covered by two strands, with one
covering the first two domains and the other one covering the last three domains.
One extra domain is included to the right of the rightmost cell which is used to
initiate displacement. The program contains seven instructions. It erases all the
1’s in between the rightmost cell and the rightmost state-0 cell at Instructions



1 and 2, and changes those cells to 0 at Instructions 4 and 5. It marks the
rightmost state-0 cell at Instruction 3, and change the marked state-0 cell to
state 1 at Instructions 6 and 7.

To prove correctness, we first argue that all the 1’s from the least significant
bit to the rightmost 0 update to 0. Then we argue that rightmost 0 updates to
1. Assume the bit string has length n and the least significant bit is at cell n
and the rightmost 0 is at cell m (m 6 n). As in the Rule 110 simulation proof,
we let jk denote the kth domain on cell j (from left to right). All cells can share
the same sequences, but we assume that each domain within a cell is orthogonal.
Additionally, the extra domain to the right of the rightmost cell is orthogonal
to all other domains.

Claim. All state 1 cells to the right of the rightmost 0 cell change to a 0.

Proof. Instruction 1 initiates a series of sequential reactions from the least sig-
nificant bit n to the rightmost 0. First the instruction strand with overhang
domain a displaces the strand covering domains n4 and n5. If the least signifi-
cant bit is 1 (m < n), the domain n3 becomes unbound after this displacement
reaction. Then the domain n3 serves as an open toehold to initiate another dis-
placement reaction with the instruction strand with overhang domain b. Similar
displacement reactions proceed until cell m. By assumption, cell m is a state-0
cell, so the domain m3 will not be open after the displacement step, thus the
displacement cascade stops. Then the strands added in Instruction 2 detach the
strands from Instruction 1, leaving the cells from the (m + 1)th bit to the nth
bit free. In Instruction 3, every applied instruction strand from cell m + 1 to n
attaches to the register. Instruction 4 shifts those strands added in Instruction
3 one domain to the left, which opens toeholds for the cooperative displacement
in Instruction 5. After those cells change to state-0 in Instruction 5, the strands
added in Instruction 6 and 7 do not change them, so they remain in state 0.

Claim. The rightmost state 0 cell changes to a 1.

Proof. Instruction 1 initiates a series of sequential reactions from the least sig-
nificant bit to the rightmost 0 at cell m. The domain m3 will not be open after
the instruction strand displaces the strand covering domains m4 and m5 and
no more strand displacement cascade can proceed to the left. Then the strands
added in Instruction 2 detach the strands from Instruction 1, leaving the domains
m4 and m5 free. The strands added in Instruction 3 serve as two purposes: (1)
They correspond to one of the strands representing state 1, thus they help cell
m to transition to state 1 and they partially displace the strand at domain m3.
(2) They serve as a place holder by binding at domains m4 and m5 to prevent
cell m from being modified in Instructions 4 and 5. Instruction 6 detaches the
strand originally bound from domain m1 to m3, leaving the domains m1 and m2

open. In Instruction 7, the instruction strand attaches to the register at domain
m1 and m2, which completes the state changing from 0 to 1.

Claim. The cells to the left of the rightmost state 0 cell stay the same.
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Proof. Note that no open toeholds are exposed at cells to the left of cell m, and
the displacement cascade does not pass to the left of cell m, thus no changes are
made to the states of those cells.

4 Discussion and future work

4.1 Data preparation

If we do not try to reuse domain sequences, the registers could be prepared by
topologically modifying naturally occurring DNA at desired locations through
nicking enzymes6 [20]. If the distance between two nicks is short (for example
the length of one domain), the strand in between will spontaneously dissociate,
forming a toehold. After the registers with different information are prepared
separately and attached to magnetic beads, they are mixed into one solution.

If we reuse domains between cells, the initial preparation of registers requires
different techniques. For example, all registers can be initialized to 0 in separate
test tubes, and then separate programs executed which move the registers to the
desired initial state.

4.2 Experimental feasibility and error handling

Toehold-mediated strand displacement and elution through magnetic beads are
well-established techniques, which supports the feasibility of experimental im-
plementation of SIMD||DNA. Other than attaching registers to magnetic beads,
registers can also be affixed to the surface of a microfluidic chip. Further, since
the instruction strands are added at high concentration and we do not rely on
slow mechanisms such as 4-way branch migration, each instruction should finish
quickly. However, strand displacement systems can be error prone, and our con-
structions make several assumptions, the violation of which could lead to various
errors.

The first assumption is that waste products from reactions between the in-
struction strands and registers do not react further with the system. Registers
and instruction strands should be allowed to react for a short amount of time
before elution such that the high concentration instruction strands interact with
the registers, but the low concentration waste products do not. Violating this
assumption can cause undesired displacements to occur, leading to possible error
in the computation. Interestingly, we conjecture that, besides the reverse of the
intended reaction (in the case of toehold exchange), the waste products and reg-
isters cannot react in the two programs given here, and therefore our programs
are robust to this type of error.

The next assumption is that of a perfect washing procedure where only
species with magnetic beads remain after elution. Imperfect washing can result
in previous instruction strands reacting with registers undergoing subsequent

6 For example, Cas9 nickase or restriction enzyme Pf Ago, uses an RNA or DNA strand
as a guide and can nick at a desired location.



instructions. In practice, the remains of imperfect washing would appear in low
concentration so as to have a low probability of affecting the system.

The final assumption is that there is no leak (only toehold-mediated dis-
placements occur). The registers contain nicks where strands could fray and
undesired toeholds could open, resulting in strands being mistakenly displaced
or incorrect strands binding. Our programs are not robust to leak, raising the
question of whether leakless design principles [21–23] can be imposed on the
constructions. Leak could also limit the longevity of information stored in our
scheme: (toehold-less) four-way branch migration can result in bit exchange er-
rors between different registers. It remains to be seen whether freezing or other
means of stabilizing the DNA complexes suffices to ensure long term storage of
information encoded in nicked registers.

In addition to preventing errors at the experimental level, it remains open
to address errors at the “software level” by employing error correction codes in
the data and employing error correction schemes in the instructions.

4.3 Data density

Unlike storing data in the DNA sequence itself, which has a data density of
2 bits per nucleotide, our schemes sacrifice data density. In our schemes, a bit
is encoded in a cell, which contains 5 domains. If a domain is composed of 6
consecutive nucleotides, it gives a data density of 0.033 (1/30) bit per nucleotide.
It is not obvious that the current construction with 5 domains per cell achieves
the highest possible data density for these programs. In practice, there is a
tradeoff between the strand binding stability and data density. Here we assume
that the minimal number of domains required for two strands to stably bind is
two, however in practice the binding strength is affected by experimental buffer
(salt concentration) and temperature. Given different experimental conditions,
it may be necessary to increase the number of domains in a cell, which could
reduce the data density further. However, one gram of DNA can still encode
exabytes of information. In principle, data density may also be increased by
using different encoding schemes, such as allowing overhangs on the top strands
to encode information.

4.4 Uniform versus non-uniform instructions

We can identify instructions as uniform or non-uniform. Uniform instructions
have the property that the same type of instruction strands are added to every
cell, as is the case in our programs. Non-uniform instructions allow strands to
be added to particular cells and not others (e.g., add strands to every seventh
cell, or cells 42 and 71). The difference in computational power between uni-
form and non-uniform instructions remains open, and non-uniform instructions
could reduce the number of instructions required for some programs. However,
non-uniform instructions could require each cell to be orthogonal in sequence. In
contrast, uniform instructions allow every cell to consist of the same sequence,



requiring only the domains within the cells to be orthogonal. Sharing the se-
quences between the cells reduces the number of different instruction strands
that need to be synthesized.

4.5 Determinism and nondeterminism

Our programs are designed with deterministic instructions: given one state of
the register, after adding the instruction strands, the register changes to one
specific state. Deterministic instructions make it easy to design, predict, rea-
son about, and compose the programs. In contrast to deterministic instructions,
one could also construct nondeterministic instructions by introducing nondeter-
minism to the updates of the cells. For example, consider an empty cell with
domains 〈3∗, 2∗, 1∗〉, and add instruction strands 〈1, 2〉 and 〈2, 3〉. Either the
first or second strand can bind, but since they displace each other, only one will
remain after elution. The probability of which strand remains depends on its rel-
ative concentration. In principle, applying nondeterministic instructions allows
for implementation of randomized algorithms and simulation of nondeterministic
computing machines.

4.6 Running time

The running time of a program depends on two factors: running time per instruc-
tion and the number of instructions. The running time per instruction depends
on whether the instruction updates the cells through parallel or sequential re-
actions. In general, instructions are capable of acting on each cell within each
register in parallel. Yet, Instruction 1 of the binary counting program does not
have this source of parallelism. A first reaction (displacement) must occur on
the rightmost cell prior to a second reaction occurring on the second cell, which
must occur prior to a third reaction on the third cell, and so on. Thus, this
instruction with sequential reactions loses the speedup given by independent in-
struction reactions occurring in parallel on each cell within a register. Besides
the running time per instruction, the larger the number of instructions per pro-
gram, the more complex is the experimental procedure. This motivates studying
the smallest number of instructions required to achieve a computational task.

4.7 Universal computation

Our registers as proposed are restricted to a finite number of cells. So although
Rule 110 on an infinite arrangement of cells can simulate an infinite-tape Turing
machine, our scheme is only capable of space-bounded computation. To claim
that a system is capable of universal computation, it is required that the data
tape—in our case, the number of cells—can be extended as needed as com-
putation proceeds. Since our program consists of uniform instructions, domain
orthogonality is only required within a cell. Therefore, in principle, the register
can be extended indefinitely during computation without exhausting the space of
orthogonal domains. The register’s length could perhaps be extended by merging
bottom strands with top strand “connectors”.



4.8 Space-efficient computation

Although Rule 110 is Turing universal, computing functions through simula-
tion of a Turing machine by Rule 110 does not make use of the full power of
SIMD||DNA. First of all, while simulation of a Turing machine by Rule 110 was
shown to be time-efficient [10], it is not space-efficient. Precisely, simulating a
Turing machine on an input which takes T time and S ≤ T space requires p(T )
time and p(T ) space (where p(T ) is some polynomial in T ). However, Turing ma-
chines can be simulated time- and space-efficiently by one-dimensional CA if the
automaton is allowed more than two states [19]. Simulating larger classes of CA
is a promising approach to space-efficient computation in this model, since our
Rule 110 simulation suggests that CA are naturally simulated by SIMD||DNA
programs.

4.9 Equalizing encodings

Our two programs use different schemes for encoding binary information in a
register. Using some universal encoding would allow applying different consecu-
tive computations to the same registers. Alternatively, we could design programs
to inter-convert between different encodings. The reason for suggesting this al-
ternative is that unlike classical machines acting on bits, in SIMD||DNA the
way a bit is encoded affects how it can be changed by instruction reactions. For
example, in the binary counting program, the encoding ensures that no toeholds
except for the rightmost domain are open on the register, which is used to argue
correctness. Alternatively, in the Rule 110 program, toeholds must be available
throughout the register to achieve the parallel cell updates required by CA.
Therefore having one encoding which implements these two different functions
seems difficult.
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