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Abstract

Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution.
CRNs are widely used to describe information processing occurring in natural cellular regulatory
networks, and with upcoming advances in synthetic biology, CRNs are a promising language for
the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of
CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not
well understood.

CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary
algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge
on a correct answer, on the other hand, have been shown to decide only the semilinear predicates
(a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of
function, rather than predicate, computation by representing the output of a function f : Nk →
Nl by a count of some molecular species, i.e., if the CRN starts with x1, . . . , xk molecules of some
“input” speciesX1, . . . , Xk, the CRN is guaranteed to converge to having f(x1, . . . , xk) molecules
of the “output” species Y1, . . . , Yl. We show that a function f : Nk → Nl is deterministically
computed by a CRN if and only if its graph {(x,y) ∈ Nk × Nl | f(x) = y} is a semilinear set.

Finally, we show that each semilinear function f (a function whose graph is a semilinear set)
can be computed by a CRN on input x in expected time O(polylog ‖x‖1).

1 Introduction

The engineering of complex artificial molecular systems will require a sophisticated understanding
of how to program chemistry. A natural language for describing the interactions of molecular species
in a well-mixed solution is that of (finite) chemical reaction networks (CRNs), i.e., finite sets of
chemical reactions such as A+B → A+C. When the behavior of individual molecules is modeled,
CRNs are assigned semantics through stochastic chemical kinetics [13], in which reactions occur
probabilistically with rate proportional to the product of the molecular count of their reactants
and inversely proportional to the volume of the reaction vessel.
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Traditionally CRNs have been used as a descriptive language to analyze naturally occurring
chemical reactions (as well as numerous other systems with a large number of interacting compo-
nents such as gene regulatory networks and animal populations). However, recent investigations
have viewed CRNs as a programming language for engineering artificial systems. These works have
shown CRNs to have eclectic computational abilities. Researchers have investigated the power of
CRNs to simulate Boolean circuits [19], neural networks [14], and digital signal processing [15].
CRNs can simulate a bounded-space Turing machine efficiently, if the number of reactions is al-
lowed to scale polynomially with the Turing machine’s space usage [27]. Other work has shown
CRNs can efficiently simulate a bounded-space Turing machine, with the number of reactions in-
dependent of the space bound, albeit with an arbitrarily small, non-zero probability of error [3].1

Even Turing universal computation is possible with an arbitrarily small, non-zero probability of
error over all time [25]. The computational power of CRNs also provides insight on why it can be
computationally difficult to simulate them [24], and why certain questions are frustratingly difficult
to answer (or even undecidable) [11, 28]. For example, it is EXPSPACE-hard to predict whether a
particular species is producible [18]. The programming approach to CRNs has also, in turn, resulted
in novel insights regarding natural cellular regulatory networks [7]. The importance of the model
is underscored by the fact that equivalent models repeatedly arise in theoretical computer science
under different guises: e.g. vector addition systems [16], petri nets [21], population protocols [1].

Recent work proposes concrete chemical implementations of arbitrary CRNs, particularly using
nucleic-acid strand-displacement cascades as the physical reaction primitive [6, 26]. Thus, since
in principle any CRN can be built, hypothetical CRNs with interesting behaviors are becoming
of more than theoretical interest. One day artificial CRNs may underlie embedded controllers
for biochemical, nanotechnological, or medical applications, where environments are inherently
incompatible with traditional electronic controllers.

One of the best-characterized computational abilities of CRNs is the deterministic computation
of predicates (decision problems) as investigated by Angluin, Aspnes and Eisenstat [2]. (They
considered the equivalent distributed computing model of population protocols motivated by sensor
networks.) Some CRNs, when started in an initial configuration assigning nonnegative integer
counts to each of k different input species, are guaranteed to converge on a single “true” or “false”
answer, in the sense that there are two special “voting” species T and F so that eventually either
T is present and F absent to indicate “true”, or vice versa to indicate “false.” The set of inputs
S ⊆ Nk that cause the system to answer “true” is then a representation of the decision problem
solved by the CRN. Angluin, Aspnes and Eisenstat showed that the input sets S decidable by some
CRN are precisely the semilinear subsets of Nk (see below).

We extend these prior investigations of decision problems or predicate computation to study
deterministic function computation. Consider the three examples in Fig. 1(top). These CRNs have
the property that they converge to the right answer no matter the order in which the reactions
happen to occur, and are thus insensitive to stochastic effects as well as reaction rate constants.
Formally, we say a function f : Nk → Nl is computed by a CRN C if the following is true. There
are “input” species X1, . . . , Xk and “output” species Y1, . . . , Yl such that, if C is initialized with
x1, . . . , xk copies of X1, . . . , Xk, then it is guaranteed to reach a configuration in which the counts
of Y1, . . . , Yl are described by the vector f(x1, . . . , xk), and these counts never again change. For
example, the CRN C with the single reaction X → 2Y computes the function f(x) = 2x in the

1 This is surprising since finite CRNs necessarily must represent large binary data strings in a unary encoding,
since they lack positional information to tell the difference between two molecules of the same species.
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Figure 1: Examples of deterministically computable functions. (Top) Three functions and examples of CRNs
deterministically computing them. The input is represented in the molecular count of X (for (a)), and moleculer
counts of X1, X2 (for (b) and (c)). The output is represented by the molecular count of Y . Example (a) computes
via the relative stoichiometry of reactants and products of a single reaction. In example (b), the second and third
reactions convert B to Y and vice versa, catalyzed by X1 and B, respectively. Thus, if there are any X1 remaining
after the first reaction finishes (and thus x1 > x2), all of B can get converted to Y permanently (since some B is
required to convert Y back to B). Since in this case the first reaction produces x2 molecules of B, x2 molecules of the
output Y are eventually produced. If the first reaction consumes all of X1 (and thus x1 ≤ x2), eventually any Y that
was produced in the second reaction gets converted to B by the third reaction. To see that the CRN in (c) correctly
computes the maximum, note that the first two reactions eventually produce x1 + x2 molecules of Y , while the third
reaction eventually produces min(x1, x2) molecules of K. Thus the last reaction eventually consumes min(x1, x2)
molecules of Y leaving x1 + x2 −min(x1, x2) = max(x1, x2) Y ’s. (Bottom) Graphs of the three functions. The set
of points belonging to the graph of each of these functions is a semilinear set. Under each plot this semilinear set is
written in the form of a union of linear sets corresponding to Equation 1.1. The defining vectors are shown as colored
arrows in the graph.

sense that, if C starts in an initial configuration with x copies of X and 0 copies of Y , then C is
guaranteed to stabilize to a configuration with 2x copies of Y . Similarly, the function f(x) = bx/2c
is computed by the single reaction 2X → Y (Fig. 1(a)), in that the final configuration is guaranteed
to have exactly bx/2c copies of Y (and 0 or 1 copies of X, depending on whether x is even or odd).

It is illuminating to compare the computation of division by 2 shown in Fig. 1(a) with another
reasonable alternative: reactions X → Y and Y → X (i.e. the reversible reaction X
Y ). If the
rate constants of the two reactions are equal, the system equilibrium is at half of the initial amount
of X transformed to Y . There are two stark differences between this implementation and that of
Fig. 1(a). First, this CRN would not have an exact output count of Y , but rather a distribution
around the equilibrium. (However, in the limit of large numbers, the error as a fraction of the total
would converge to zero.) Second, the equilibrium amount of Y for any initial amount of X would
depend on the relative rate constants of the two reactions. In contrast, the deterministic computa-
tion discussed in this paper relies on the identity and stoichiometry of the reactants and products
rather than the rate constants. While the rates of reactions are analog quantities, the identity and
stoichiometry of the reactants and products are naturally digital. Methods for physically imple-
menting CRNs naturally yield systems with digital stoichiometry that can be set exactly [6, 26].
While rate constants can be tuned, being analog quantities, it cannot be expected that they can
be controlled precisely.
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A few general properties of this type of deterministic computation can be inferred. The first
property is that a deterministic CRN is able to handle input molecules added at any time, and not
just initially. Otherwise, if the CRN could reach a state after which it no longer “accepts input”,
then there would be a sequence of reactions that would lead to an incorrect output even if all input
is present initially. (It is always possible that some input molecules remain unreacted for arbitrarily
long.)

The second general property of deterministic computation relates to composition. As any bona
fide computation must be composable, it is important to ask: can the output of one deterministic
CRN be the input to another? The problem is that deterministic CRNs have, in general, no way
of knowing when they are done computing, or whether they will change their answer in the future.
This is essentially because a CRN cannot deterministically detect the absence of a species, and
thus, for example, cannot discern when all input has been read. Moreover, simply concatenating
two deterministic CRNs (renaming species to avoid conflict) does not always yield a deterministic
CRN. For example, consider computing the function f(x1, x2) = bmax(x1, x2)/2c by composing the
CRNs in Fig. 1(c) and (a). The new CRN is:

X1 → Z1 +W

X2 → Z2 +W

Z1 + Z2 → K

K +W → ∅
W +W → Y

where W is the output species of the max computation, that acts as the input to the division by
2 computation. Note that if W happens to be converted to Y by the last reaction before it reacts
with K, then the system can converge to a final output value of Y that is larger than expected. In
other words, because the first CRN needs to consume its output W , the second CRN can interfere
by consuming W itself (in the process of reading it out).

In contrast to the above example, two deterministic CRNs can be simply concatenated to make
a new deterministic CRN if the first CRN never consumes its output species (i.e. it produces its
output “monotonically”). Since it doesn’t matter when the input to the second CRN is produced
(the first property, above), the overall computation will be correct. Yet deterministically computing
a non-monotonic function without consuming output species is impossible (see Section 4). In a
number of places in this paper, we convert a non-monotonic function into a monotonic one over
more outputs, to allow the result to be used by a downstream CRN.

What do the functions in Fig. 1(top) have in common such that the CRNs computing them
can inevitably progress to the right answer no matter what order the reactions occur in? What
other functions can be computed similarly? Answering these questions may seem difficult because
it appears like the three examples, although all deterministic, operate on different principles and
seem to use different ideas.

We show that the functions deterministically computable by CRNs are precisely the semilinear
functions, where we define a function to be semilinear if its graph {(x,y) ∈ Nk × Nl | f(x) = y}
is a semilinear subset of Nk × Nl. This means that the graph of the function is a union of a finite
number of linear sets – i.e. sets that can be written in the form

{ b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } (1.1)
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for some fixed vectors b,u1, . . . ,up ∈ Nk+l. Fig. 1(bottom) shows the graphs of the three example
functions expressed as a union of sets of this form. Informally, semilinear functions can be thought
of as “piecewise linear functions” with a finite number of pieces, and linear domains of each piece.2

This characterization implies, for example, that such functions as f(x1, x2) = x1x2, f(x) =
x2, or f(x) = 2x are not deterministically computable. For instance, the graph of the function
f(x1, x2) = x1x2 consists of infinitely many lines of different slopes, and thus, while each line
is a linear set, the graph is not a finite union of linear sets. Our result employs the predicate
computation characterization of Angluin, Aspnes and Eisenstat [2], together with some nontrivial
additional technical machinery.

While the example CRNs in Fig. 1 all seem to use different “tricks”, in Section 4 we de-
velop a systematic construction for any semilinear function. To get the gist of this construc-
tion see the example in Fig. 2. To obtain a CRN computing the example semilinear function
f(x1, x2) = max(2x1−x2, x2), we decompose the function into “linear” pieces: f1(x1, x2) = 2x1−x2

and f2(x1, x2) = x2 (formally partial affine functions, see Section 2). Then semilinear predicate
computation (per [2]) is used to decide which linear function should be applied to a given input. A
decomposition compatible with this approach is always possible by Lemma 4.3. Linear functions
such as f1 and f2 are easy for CRNs to deterministically compute by the relative stoichiometry of
the reactants and products (analogously to the example in Fig. 1(a)). However, note that to cor-
rectly compose the computation of f1 with the downstream computation (Fig. 1(b), right column)
we convert f1 from a non-monotonic function with one output, to a monotonic function with two
outputs such that the original output is encoded by their difference.

In the last part of this paper, we turn our attention to optimizing the time required for CRNs to
converge to the answer. While the construction of Section 4 uses O(‖x‖ log ‖x‖) time, in Section 5,
we show that every semilinear function can be deterministically computed on input x in expected
time polylog(‖x‖). This is done by a similar technique used by Angluin, Aspnes, and Eisenstat [2]
to show the equivalent result for predicate computation. They run a slow deterministic computation
in parallel with a fast randomized computation, allowing the deterministic computation to compare
the two answers and update the randomized answer only if it is incorrect, which happens with low
probability. However, novel techniques are required since it is not as simple to “nondestructively
compare” two integers (so that the counts are only changed if they are unequal) as to compare two
Boolean values.

2 Preliminaries

Given a vector x ∈ Nk, let ‖x‖ = ‖x‖1 =
∑k

i=1 x(i), where x(i) denotes the ith coordinate of x.
We abuse notation and consider the sets Nk ×Nl and Nk+l to be the same, because it is sometimes
convenient to treat an ordered pair of vectors as being concatenated into a single longer vector. A
set A ⊆ Nk is linear if there exist vectors b,u1, . . . ,up ∈ Nk such that

A = { b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } .
2Semilinear sets have a number of characterizations. They are often thought of as generalizations of arithmetic

progressions. They are also exactly the sets that are definable in Presburger arithmetic [22]: the first-order theory of
the natural numbers with addition. Equivalently, they are the sets accepted by boolean combinations of “modulo” and
“threshold” predicates [2]. Semilinear functions are less well-studied. The “piecewise linear” intuitive characterization
is formalized in Lemma 4.3.
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g(x1, x2)= 2x1-x2

h(x1, x2)= x2

Any semilinear function can be piecewise defined in terms of linear functions, 
with the decision dictated by semilinear predicates (Lemma 4.3):

f(x1, x2) ={ if x1 > x2

otherwise

start with:   (input) X1, X2,   (initial context) 1 molecule of F
output:  Y

a)

b)

Figure 2: An example capturing the essential elements of our systematic construction for computing semilinear
functions (Lemma 4.4). To compute the target semilinear function, we recast it as a piecewise function defined in terms
of linear functions, such that semilinear predicates can decide which of the linear functions is applicable for a given
input (this recasting is possible by Lemma 4.3). (a) The graph of the target function visualizing the decomposition
into linear functions. (b) A CRN deterministically computing the target function with intuitive explanations of
the reactions. We use tri-molecular reactions for simplicity of exposition; however, these can be converted into a
sequence of bimolecular reactions. Note that we allow an “initial context”: a fixed set of molecules that are always
present in the initial state in addition to the input. The linear functions g and h are computed monotonically by
representing the output as the difference of P (“produce”) minus C (“consume”) species. Thus although P g − Cg
could be changing non-monotonically, P g and Cg do not decrease over time, allowing them to be used as inputs for
downstream computation. To compute the semilinear predicate φ(x1, x2) = “x1 > x2?”, a single molecule, converted
between F (φ = “false”) and T (φ = “true”) forms, goes back and forth consuming Xφ

1 and Xφ
2 . Whether it gets

stuck in the F or T forms indicates the excess of Xφ
1 or Xφ

2 . The reactions in the right column use the output of
this predicate computation to set the count of Y (the global output) to either the value computed by g or h. Note
that the CRN cannot “know” when the predicate computation has finished since the absence of Xφ

1 or Xφ
2 cannot

be detected. Thus the reactions in the right column must be capable of responding to a change in F/T . Species P̂ g,
P̂h, and Ĉg are used to backup the values of P g, Ph, and Cg, enabling the switch in output.

Set A is semilinear if it is a finite union of linear sets. If f : Nk → Nl is a function, define the
graph of f to be the set

{
(x,y) ∈ Nk × Nl

∣∣ f(x) = y
}
. A function is semilinear if its graph is a

semilinear set.

6



We say a partial function f : Nk 99K Nl is affine if there exist kl rational numbers a1,1, . . . , ak,l ∈
Q and l + k nonnegative integers b1, . . . , bl, c1, . . . , ck ∈ N such that, if y = f(x), then for each
j ∈ {1, . . . , l}, y(j) = bj +

∑k
i=1 ai,j(x(i) − ci), and for each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. (In

matrix notation, there exist a k × l rational matrix A and vectors b ∈ Nl and c ∈ Nk such that
f(x) = A(x−c) +b.) In other words, the graph of f , when projected onto the (k+ 1)-dimensional
space defined by the k coordinates corresponding to x and the single coordinate corresponding to
y(j), is a subset of a k-dimensional hyperplane.

Four aspects of the definition of affine functions invite explanation.
First, we allow partial functions because Lemma 4.3 characterizes the semilinear functions as

finite combinations of affine functions, where the union of the domains of the functions is the entire
input space Nk. The value of an affine function on an input outside of its domain is irrelevant (and
in fact may be non-integer).

Second, we have two separate “constant offsets” bj and ci. Affine functions over the reals are
typically defined with only one of these, bj . Our definition captures the form that is directly
computable with molecular counts: we can take x, subtract c, multiply by A, and subtract b,
with every intermediate result being integer-valued. If we try to incorporate the c offset into the b
offset, we could end up with fractional intermediate computations.

Third, it may seem overly restrictive to require bj and ci to be nonnegative. In fact, our proof
of Lemma 4.2 is easily modified to show how to construct a CRN to compute an affine function
that allows negative values for bj and ci. However, Lemma 4.3 shows that, when the function is
such that its graph is a nonnegative linear set, then we may freely assume that bj and ci to be
nonnegative. Since this simplifies some of our definitions, we use this convention.

Fourth, the requirement that x(i)−ci ≥ 0 seems artificial. When we prove that every semilinear
function can be written as a finite union of partial affine functions with linear graphs (Lemma 4.3),
however, this will follow from the fact that the “offset vector” in the definition of a linear set is
required to be nonnegative.

Note that by appropriate integer arithmetic, a partial function f : Nk 99K Nl is affine if and only
if there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l+k nonnegative integers b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈
N such that, if y = f(x), then for each j ∈ {1, . . . , l}, y(j) = bj + 1

dj

∑k
i=1 ni,j(x(i) − ci), and for

each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. Each dj may be taken to be the least common multiple of
the denominators of the rational coefficients in the original definition. We will employ this latter
definition when convenient.

2.1 Chemical reaction networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the set of functions
f : Λ→ N. Equivalently, we view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with
each coordinate “labeled” by an element of Λ. Given X ∈ Λ and c ∈ NΛ, we refer to c(X) as the
count of X in c. We write c ≤ c′ to denote that c(X) ≤ c′(X) for all X ∈ Λ. Given c, c′ ∈ NΛ,
we define the vector component-wise operations of addition c + c′, subtraction c − c′, and scalar
multiplication nc for n ∈ N. If ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by
assuming c(X) = 0 for all X ∈ Λ \∆.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r,p, k〉 ∈ NΛ×NΛ×R+,
specifying the stoichiometry of the reactants and products, respectively, and the rate constant k. If
not specified, assume that k = 1 (this is the case for all reactions in this paper), so that the reaction
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α = 〈r,p, 1〉 is also represented by the pair 〈r,p〉 . For instance, given Λ = {A,B,C}, the reaction
A + 2B → A + 3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN) is a
pair C = (Λ, R), where Λ is a finite set of chemical species, and R is a finite set of reactions over Λ.
A configuration of a CRN C = (Λ, R) is a vector c ∈ NΛ. We also write #cX to denote c(X), the
count of species X in configuration c, or simply #X when c is clear from context.

Given a configuration c and reaction α = 〈r,p〉, we say that α is applicable to c if r ≤ c (i.e.,
c contains enough of each of the reactants for the reaction to occur). If α is applicable to c, then
write α(c) to denote the configuration c + p− r (i.e., the configuration that results from applying
reaction α to c). If c′ = α(c) for some reaction α ∈ R, we write c →C c′, or merely c → c′ when
C is clear from context. An execution (a.k.a., execution sequence) E is a finite or infinite sequence
of one or more configurations E = (c0, c1, c2, . . .) such that, for all i ∈ {1, . . . , |E| − 1}, ci−1 → ci.
If a finite execution sequence starts with c and ends with c′, we write c →∗C c′, or merely c →∗ c′
when the CRN C is clear from context. In this case, we say that c′ is reachable from c.

Turing machines, for example, have different semantic interpretations depending on the com-
putational task under study (deciding a language, computing a function, etc.). Similarly, in this
paper we use CRNs to decide subsets of Nk and to compute functions f : Nk → Nl. In the next two
subsections we define two semantic interpretations of CRNs that correspond to these two tasks.

2.2 Stable decidability of predicates

We now review the definition of stable decidability of predicates introduced by Angluin, Aspnes,
and Eisenstat [2].3 Intuitively, some species “vote” for a true/false answer and the system stabilizes
to an output when a consensus is reached and it can no longer change its mind. The determinism
of the system is captured in that it is impossible to stabilize to an incorrect answer, and the correct
stable output is always reachable.

A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ, φ, σ), where (Λ, R) is a CRN,
Σ ⊆ Λ is the set of input species, Υ ⊆ Λ is the set of voters4, φ : Υ→ {0, 1} is the (Boolean) output
function, and σ ∈ NΛ\Σ is the initial context. An input to D will be a vector i0 ∈ NΣ (equivalently,
i0 ∈ Nk if we write Σ = {X1, . . . , Xk} and assign Xi to represent the i’th coordinate). Thus a CRD
together with an input vector defines an initial configuration i defined by i(X) = i0(X) if X ∈ Σ,
and i(X) = σ(X) otherwise. We say that such a configuration is a valid initial configuration, i.e.,
i � (Λ \ Σ) = σ. If we are discussing a CRN understood from context to have a certain initial
configuration i, we write #0X to denote i(X).

We extend φ to a partial function Φ : NΛ 99K {0, 1} as follows. Φ(c) is undefined if either
c(X) = 0 for all X ∈ Υ, or if there exist X0, X1 ∈ Υ such that c(X0) > 0, c(X1) > 0, φ(X0) = 0
and φ(X1) = 1. Otherwise, there exists b ∈ {0, 1} such that (∀X ∈ Υ)(c(X) > 0 =⇒ φ(X) = b);
in this case, the output Φ(c) of configuration c is b.

A configuration c is output stable if Φ(c) is defined and, for all c′ such that c →∗ c′, Φ(c′) =
Φ(c).5 We say a CRD D stably decides the predicate ψ : NΣ → {0, 1} if, for any valid initial

3Those authors use the term “stably compute”, but we reserve the term “compute” to apply to the computation
of functions f : Nk → Nl.

4The definitions of [2] assume that Υ = Λ (i.e., every species votes). However, it is not hard to show that we may
equivalently assume there are only two voting species, F and T , so that #F > 0 and #T = 0 means that the CRD is
answering “false”, and #F = 0 and #T > 0 means that the CRD is answering “true.” This convention will be more
convenient in this paper.

5Note that reactions may be applicable in an output stable state c. The same holds for our (very similar) definition
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configuration i ∈ NΛ with i � Σ = i0, for all configurations c ∈ NΛ, i→∗ c implies c→∗ c′ such that
c′ is output stable and Φ(c′) = ψ(i0). Note that this condition implies that no incorrect output
stable configuration is reachable from i. We say that D stably decides a set A ∈ Nk if it stably
decides its indicator function.

The following theorem is due to Angluin, Aspenes, and Eisenstat [2]:

Theorem 2.1 ( [2]). A set A ⊆ Nk is stably decidable by a CRD if and only if it is semilinear.

The model they use is defined in a slightly different way. They study population protocols, a
distributed computing model in which a fixed-size set of agents, each having a state from a finite
set, undergo successive pairwise interactions, the two agents updating their states upon interacting.
This is equivalent to chemical reaction networks in which all reactions have exactly two reactants
and two products. However, the result carries over to our more general model, as we now explain.

The reverse direction, that every semilinear predicate is decided by some CRD, follows directly
from the result on population protocols, since population protocols are a subset of the set of
all CRNs. The forward direction of Theorem 2.1, that every stably decidable set is semilinear,
holds even if stable decidability is defined with respect to any relation →∗ on Nk that is reflexive,
transitive, and “respects addition”, i.e., [(∀c1, c2,x ∈ Nk) (c1 →∗ c2) =⇒ (c1 + x →∗ c2 + x)].
These properties can easily be shown to hold for the CRN reachability relation. The third property,
in particular, means that if some molecules c1 can react to form molecules c2, then it is possible
for them to react in the presence of some extra molecules x, such that no molecules from x react
at all.

2.3 Stable computation of functions

Aspnes and Ruppert [4] describe an extension from Boolean predicates to functions, by generalizing
the output function φ to a larger range φ : Υ→ {0, . . . , l}. Equivalently, one can consider multiple
voting species V 0, . . . V l; if the CRN converges to only V j votes, then then output is j. However,
this output encoding handles only bounded-range functions: the size of Υ must be at least the
range of the function. By contrast our results concern functions with unbounded range.

We now define a notion of stable computation of functions in which the output and input are
encoded identically — in molecular counts of certain species. Intuitively, the inputs to the function
are the initial counts of input species X1, . . . , Xk, and the outputs are the counts of output species
Y1, . . . , Yl. The system stabilizes to an output when the counts of the output species can no longer
change. Again determinism is captured in that it is impossible to stabilize to an incorrect answer
and the correct stable output is always reachable.

Let k, l ∈ Z+. A chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ,Γ, σ), where
(Λ, R) is a CRN, Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is the set of output species, such that
Σ ∩ Γ = ∅, |Σ| = k, |Γ| = l, and σ ∈ NΛ\Σ is the initial context. Write Σ = {X1, X2, . . . , Xk}
and Γ = {Y1, Y2, . . . , Yl}. We say that a configuration c is output count stable if, for every c′ such

of output stable states of CRNs that compute functions instead of predicates, defined in Section 2.3. The definition
simply requires that no sequence of these reactions can either 1) produce a molecule that votes contrary to Φ(c),
or 2) consume all molecules voting Φ(c). Our systematic construction in Lemma 4.4 obeys the stronger constraint
that every output-stable state is “static”: no reactions are applicable to it. Thus requiring output stable states to
be static does not alter the class of functions stably computable by CRNs. However, the time to convergence proven
in Theorem 5.2 is sensitive to this choice, since our construction for Theorem 5.2 reaches an output stable state in
expected time O(polylog n), but reactions continue to occur for expected time Ω(poly n).

9



that c →∗ c′ and every Yi ∈ Γ, c(Yi) = c′(Yi) (i.e., the counts of species in Γ will never change
if c is reached). As with CRD’s, we require initial configurations i of C with input i0 ∈ NΣ to
obey i(X) = i0(X) if X ∈ Σ and i(X) = σ(X) otherwise, calling them valid initial configura-
tions. We say that C stably computes a function f : Nk → Nl if for any valid initial configura-
tion i ∈ NΛ, i →∗ c implies c →∗ c′ such that c′ is an output count stable configuration with
f(i(X1), i(X2), . . . , i(Xk)) = (c′(Y1), c′(Y2), . . . , c′(Yl)). Note that this condition implies that no
incorrect output stable configuration is reachable from i.

As an example of a formally defined CRC consider the function f(x) = bx/2c shown in Fig. 1(a).
This function is stably computed by the CRC (Λ, R,Σ,Γ, σ) where (Λ, R) is the CRN consisting of
a single reaction 2X → Y , Σ = {X} is the set of input species, Γ = {Y } is the set of output species,
and the initial context σ is zero for all species in Λ \ Σ. In Fig. 2(b) the initial context σ(F ) = 1,
and is zero for all other species in Λ \Σ. In Fig. 1(a) there is at most one reaction that can happen
in any reachable configuration. In contrast, different reactions may occur next in Fig. 1(b) and (c).
However, from any reachable state, we can reach the output count stable configuration with the
correct amount of Y , satisfying our definition of stable computation.

In Sections 4–5 we will describe systematic (but much more complex) constructions for these
and all functions with semilinear graphs.

2.4 Fair execution sequences

Note that by defining deterministic computation in terms of certain states being reachable and
others not, we cannot guarantee the system will get to the correct output for any possible execution
sequence. For example suppose an adversary controls the execution sequence. Then {X → 2Y,A→
B,B → A} will not reach the intended output state y = 2x if the adversary simply does not let
the first reaction occur, always preferring the second or third.

Intuitively, in a real chemical mixture, the reactions are chosen randomly and not adversar-
ially, and the CRN will get to the correct output. In this section we follow Angluin, Aspnes,
and Eisenstat [2] and define a combinatorial condition called fairness on execution sequences that
captures what is minimally required of the execution sequence to be guaranteed that a stably decid-
ing/computing CRD/CRC will reach the output stable state. In the next section we consider the
kinetic model, which ascribes probabilities to execution sequences. The kinetic model also defines
the time of reactions, allowing us to study the computational complexity of the CRN computation.
Note that in the kinetic model, if the reachable configuration space is bounded for any start con-
figuration (i.e. if from any starting configuration there are finitely many configurations reachable)
then any observed execution sequence will be fair with probability 1. This will be the case for our
constructions in Sections 4 and 5.

Let ∆ ⊆ Λ. We say that p ∈ N∆ is a partial configuration (with respect to ∆). We write
p = c � ∆ for any configuration c such that c(X) = p(X) for all X ∈ ∆, and we say that p is
the restriction of c to ∆. Say that a partial configuration p with respect to ∆ is reachable from
configuration c′ if there is a configuration c reachable from c′ and p = c � ∆. In this case, we write
c′ →∗ p.

An infinite execution E = (c0, c1, c2, . . .) is fair if, for all partial configurations p, if p is infinitely
often reachable then it is infinitely often reached.6 In other words, no reachable partial configuration

6i.e. (∀∆ ⊆ Λ)(∀p ∈ N∆)[((∃∞i ∈ N) ci →∗ p) =⇒ ((∃∞j ∈ N) p = cj � ∆)].
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is “starved”.7 This definition, applied to finite executions, deems all of them fair vacuously. We
wish to distinguish between finite executions that can be extended by applying another reaction
and those that cannot. Say that a configuration is terminal if no reaction is applicable to it. We
say that a finite execution is fair if and only if it ends in a terminal configuration. For any species
A ∈ Λ, we write #∞A to denote the eventual convergent count of A if #A is guaranteed to stabilize
on any fair execution sequence; otherwise, #∞A is undefined.

The next lemma characterizes stable computation of functions by CRCs in terms of fair execu-
tion sequences, showing that the counts of output species will converge to the correct output values
on any fair execution sequence. An analogous lemma holds for CRDs.

Lemma 2.2. A CRC stably computes a function f : Nk → Nl if and only if for every valid
initial configuration i ∈ NΛ, every fair execution E = (i, c1, c2, . . .) contains an output count stable
configuration c such that f(i(X1), i(X2), . . . , i(Xk)) = (c(Y1), c(Y2), . . . , c(Yl)).

Proof. The “if” direction follows because every finite execution sequence can be extended to be
fair, and thus an output count stable configuration with the correct output is always reachable.
The “only if” direction is shown as follows. We know that from any reachable configuration c,
some correct output stable configuration c′ is reachable (but possibly different c′ for different
c). We will argue that in any infinite fair execution sequence there is some partial configuration
that is reachable infinitely often, and that any state with this partial configuration is the correct
stable output state. Consider an infinite fair execution sequence c1, c2, . . . , and the corresponding
reachable correct output stable configurations c′1, c

′
2, . . . . As in Lemma 11 of [2], there is some

integer k ≥ 1 such that a configuration is output count stable if and only if it is output count
stable when each coordinate that is larger than k is set to exactly k (k-truncation). The infinite
sequence c′1, c

′
2, . . . must have an infinite subsequence sharing the same k-truncation. Let p be

the partial configuration consisting of the correct output and all the coordinates less than k in the
shared truncation. This partial configuration is reachable infinitely often, and no matter what the
counts of the other species outside of p are, the resulting configuration is output count stable.

2.5 Kinetic model

The following model of stochastic chemical kinetics is widely used in quantitative biology and other
fields dealing with chemical reactions between species present in small counts [13]. It ascribes
probabilities to execution sequences, and also defines the time of reactions, allowing us to study
the computational complexity of the CRN computation in Sections 4 and 5.

In this paper, the rate constants of all reactions are 1, and we define the kinetic model with
this assumption. A reaction is unimolecular if it has one reactant and bimolecular if it has two
reactants. We use no higher-order reactions in this paper when using the kinetic model.

The kinetics of a CRN is described by a continuous-time Markov process as follows. Given a
fixed volume v and current configuration c, the propensity of a unimolecular reaction α : X → . . .
in configuration c is ρ(c, α) = #cX. The propensity of a bimolecular reaction α : X + Y → . . .,

7This definition of fairness is stricter than that used in [2], which used only full configurations rather than par-
tial configurations. We choose this definition to prevent intuitively unfair executions from vacuously satisfying the
definition of “fair” simply because of some species whose count is monotonically increasing with time (preventing
any configuration from being infinitely often reachable). Such a definition is unnecessary in [2] because population
protocols by definition have a finite state space, since they enforce that every reaction has precisely two reactants
and two products.
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where X 6= Y , is ρ(c, α) = #cX#cY
v . The propensity of a bimolecular reaction α : X + X → . . .

is ρ(c, α) = 1
2

#cX(#cX−1)
v . The propensity function determines the evolution of the system as

follows. The time until the next reaction occurs is an exponential random variable with rate
ρ(c) =

∑
α∈R ρ(c, α) (note that ρ(c) = 0 if no reactions are applicable to c). The probability that

next reaction will be a particular αnext is ρ(c,αnext)
ρ(c) .

The kinetic model is based on the physical assumption of well-mixedness that is valid in a
dilute solution. Thus, we assume the finite density constraint, which stipulates that a volume
required to execute a CRN must be proportional to the maximum molecular count obtained during
execution [25]. In other words, the total concentration (molecular count per volume) is bounded.
This realistically constrains the speed of the computation achievable by CRNs. Note, however, that
it is problematic to define the kinetic model for CRNs in which the reachable configuration space
is unbounded for some start configurations, because this means that arbitrarily large molecular
counts are reachable.8 We apply the kinetic model only to CRNs with configuration spaces that
are bounded for each start configuration.

We now prove two lemmas about the complexity of certain common sequences of reactions.
Besides providing simple examples of the kinetic model, they capture patterns that will be used
throughout Section 4 and 5. These lemmas are implicit or explicit in many earlier papers on
stochastic CRNs.

Lemma 2.3. Let {A1, . . . , Am} be a set of species, such that the count of each is O(n). Then the
expected time for i unimolecular reactions Ai→ . . . , in which none of the Ai appear as products,
to consume all Ai’s is O(log n).

Proof. In any configuration c, the propensity of the ith reaction is #cAi. Let k =
∑

i #cAi. The
time until next reaction is an exponential random variable with propensity k. Thus the expected
time until the next reaction occurs is 1/k. Every time one of the reactions occurs, one of the Ai’s
is consumed, and so k decreases by 1. Thus, by linearity of expectation, the expected time to

consume all the Ai molecules is
∑O(n)

k=1 1/k = O(log n).

Lemma 2.4. Let L be a species with count 1, and A a species of count n. Then, if the volume is
v = O(n), the expected time for reaction L+A→L+B to convert all A’s to B’s is O(n log n).

Proof. When exactly k molecules of species A remain, the propensity of the reaction is k/v. Thus
the expected time until the next reaction is v/k. Therefore by linearity of expectation, the expected
time for L to react with every A is

∑n
k=1

v
k = v O(log(n)) = O(n log n).

3 Exactly the semilinear functions can be deterministically com-
puted

In this section we use Theorem 2.1 to show that only “simple” functions can be stably computed
by CRCs. This is done by showing how to reduce the computation of a function by a CRC to the
decidability of its graph by a CRD, and vice versa. In this section we do not concern ourselves with
kinetics. Thus the volume is left unspecified, and we consider the combinatorial-only condition

8One possibility is to have a “dynamically” growing volume as in [25].
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of fairness on execution sequences for our positive result (Lemma 3.2) and direct reachability
arguments for the negative result (Lemma 3.1).

The next lemma shows that every function computable by a chemical reaction network is semi-
linear by reducing stably deciding a set that is the graph of a function to stably computing that
function. It turns out that the reduction technique of introducing “production” and “consumption”
indicator species will be a general technique, used repeatedly in this paper.

Lemma 3.1. Every function stably computable by a CRC is semilinear.

Proof. Suppose there is a CRC C stably computing f . We will construct a CRD D that stably
decides the graph of f . By Theorem 2.1, this implies that the graph of f is semilinear. Intuitively,
the difficulty lies in checking whether the amount of the outputs Yi produced by C matches the
value given to the decider D as input. What makes this non-trivial is that D does not know whether
C has finished computing, and thus must compare Yi while Yi is potentially being changed by C.
In particular, D cannot consume Yi or that could interfere with the operation of C.

Let C = (Λ, R,Σ,Γ, σ) be the CRC that stably computes f : Nk → Nl, with input species
Σ = {X1, . . . , Xk} and output species Γ = {Y1, . . . , Yl}. We will modify C to obtain the following
CRD D = (Λ′, R′,Σ′,Υ′, φ′, σ′). Let YC = {Y C

1 , . . . , Y C
l } and YP = {Y P

1 , . . . , Y
P
l }, where each

Y C
i , Y

P
i 6∈ Λ are new species. Intuitively, #Y P

i represents the number of Yi’s produced by C
and #Y C

i the number of Yi’s consumed by C. The goal is for D to stably decide the predicate
f(#0X1, . . . ,#0Xk) = (#0Y

C
1 , . . . ,#0Y

C
l ). In other words, the initial configuration of D will be

the same as that of C except for some copies of Y C
i , equal to the purported output of f to be tested

by D.
Let Λ′ = Λ ∪ YC ∪ YP ∪ {F, T}. Let Σ′ = Σ ∪ YC . Let Υ′ = {F, T}, with φ(F ) = 0 and

φ(T ) = 1. Let σ′(T ) = 1 and σ′(S) = 0 for all S ∈ Λ′\ (Σ′ ∪ {T}). We will modify R to
obtain R′ as follows. For each reaction α that consumes a net number n of Yi molecules, append
n products Y C

i to α. For each reaction α that produces a net number n of Yi molecules, append
n products Y P

i to α. For example, the reaction A + 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 becomes
A+ 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 + 2Y P

1 + Y C
3 .

Then add the following additional reactions to R′, for each i ∈ {1, . . . , l},

Y P
i + Y C

i → T (3.1)

Y P
i + T → Y P

i + F (3.2)

Y C
i + T → Y C

i + F (3.3)

F + T → T (3.4)

Observe that if f(#0X1, . . . ,#0Xk) = (#0Y
C

1 , . . . ,#0Y
C
l ), then from any reachable configura-

tion we can reach a configuration without any Y P
i or Y C

i for all i, and such that no more of either
kind can be produced. (The CRC stabilizes and all of Y P

i and Y C
i is consumed by reaction 3.1.)

In this configuration we must have #T > 0 because the last instance of reaction 3.1 produced it
(or if no output was ever produced, T comes from the initial context σ′), and T can no longer be
consumed in reactions 3.2–3.3. Thus, since all of F can be consumed in reaction 3.4, a configuration
with #T > 0 and #F = 0 is always reachable, and this configuration is output stable.

Now suppose f(#0X1, . . . ,#0Xk) 6= (#0Y
C

1 , . . . ,#0Y
C
l ) for some output coordinate i∗ ∈ {1, . . . , l}.

This means that from any reachable configuration we can reach a configuration with either #Y P
i∗ > 0

or #Y C
i∗ > 0 but not both, and such that for all i, no more of Y P

i and Y C
i can be produced. (This
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happens when the CRC stabilizes and reaction 3.1 consumes the smaller of Y P
i∗ or Y C

i∗ .) From this
configuration, we can reach a configuration with #F > 0 and #T = 0 through reactions 3.2–3.3.
This is an output stable configuration since reactions 3.2–3.4 require T .

The next lemma shows the converse of Lemma 3.1. Intuitively, it uses a random search of the
output space to look for the correct answer to the function and uses a predicate decider to check
whether the correct solution has been found.

Lemma 3.2. Every semilinear function is stably computable by a CRC.

Proof. Let f : Nk → Nl be a semilinear function, and let

G =
{

(x,y) ∈ Nk × Nl
∣∣∣ f(x) = y

}
denote the graph of f . We then consider the set

Ĝ =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣∣ f(x) = yP − yC

}
.

Intuitively, Ĝ defines the same function as G, but with each output variable expressed as the
difference between two other variables. Note that Ĝ is not the graph of a function since for each
y ∈ Nl there are many pairs (yP ,yC) such that yP − yC = y. However, we only care that Ĝ is a
semilinear set so long as G is a semilinear set, by Lemma 3.3, proven below.

Then by Theorem 2.1, Ĝ is stably decidable by a CRD D = (Λ, R,Σ,Υ, φ, σ), where

Σ = {X1, . . . , Xk, Y
P

1 , . . . , Y
P
l , Y

C
1 , . . . , Y C

l },

and we assume that Υ contains only species T and F such that for any output-stable configuration
of D, exactly one of #T or #F is positive to indicate a true or false answer, respectively.

Define the CRC C = (Λ′, R′,Σ′,Γ′, σ′) as follows. Let Σ′ = {X1, . . . , Xk}. Let Γ′ = {Y1, . . . , Yl}.
Let Λ′ = Λ ∪ Γ′. Let σ′(S) = σ(S) for all S ∈ Λ \ Σ, and let σ′(S) = 0 for all S ∈ Λ′ \ (Λ \ Σ).
Intuitively, we will have F change the value of y (by producing either Y P

j or Y C
j molecules), since

F ’s presence indicates that D has not yet decided that the predicate is satisfied. It essentially
searches for new values of y that do satisfy the predicate. This indirect way of representing the
value y is useful because yP and yC can both be increased monotonically to change y in either
direction. If D had Yj as a species directly, and if we wanted to test a lower value of yj , then this
would require consuming a copy of Yj , but this may not be possible if D has already consumed all
of them.

Let R′ be R plus the following reactions for each j ∈ {1, . . . , l}:

F → F + Y P
j + Yj (3.5)

F + Yj → F + Y C
j (3.6)

It is clear that reactions (3.5) and (3.6) enforce that at any time, #Yj is equal to the total
number of Y P

j ’s produced by reaction (3.5) minus the total number of Y C
j ’s produced by reaction

(3.6) (although some of each of Y P
j or Y C

j may have been produced or consumed by other reactions
in R).
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Suppose that f(x) 6= (#Y1, . . . ,#Yl). Then if there are no F molecules present, the counts of
Y P
j and Y C

j are not changed by reactions (3.5) and (3.6). Therefore only reactions in R proceed,
and by the correctness of D, eventually an F molecule is produced (since eventually D must reach an
output-stable configuration answering “false”, although F may appear before D reaches an output-
stable configuration, if some T are still present). Once F is present, by the fairness condition
(choosing ∆ = {Y1, . . . .Yl}), eventually the value of (#Y1, . . . ,#Yl) will change by reaction (3.5)
or (3.6). In fact, every value of (#Y1, . . . ,#Yl) is possible to explore by the fairness condition.

Suppose then that f(x) = (#Y1, . . . ,#Yl). Perhaps F is present because the reactions in R have
not yet reached an output-stable “true” configuration. Then perhaps the value of (#Y1, . . . ,#Yl)
will change so that f(x) 6= (#Y1, . . . ,#Yl). But by the fairness condition, a correct value of
(#Y1, . . . ,#Yl) must be present infinitely many times, so again by the fairness condition, since from
such a configuration it is possible to eliminate all F molecules before producing Y P

j or Y C
j molecules,

this must eventually happen. When all F molecules are gone while f(x) = (#Y1, . . . ,#Yl) and D
is in an output-stable configuration (thus no F can ever again be produced), then it is no longer
possible to change the value of (#Y1, . . . ,#Yl), whence C has reached a count-stable configuration
with the correct answer. Therefore C stably computes f .

Note that the total molecular count (hence the required volume) of the CRC in Lemma 3.2 is
unbounded. In Section 4 we discuss an alternative construction that avoids this problem.

Lemma 3.3. Let k, l ∈ Z+, and suppose G ⊆ Nk × Nl is semilinear. Define

Ĝ =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣∣ (x,yP − yC) ∈ G

}
.

Then Ĝ is semilinear.

Proof. Let G1, . . . , Gt be linear sets such that G =
⋃t
i=1Gi. For each i ∈ {1, . . . , t}, define

Ĝi =
{

(x,yP ,yC) ∈ Nk × Nl × Nl
∣∣∣ (x,yP − yC) ∈ Gi

}
.

It suffices to show that each Ĝi is linear since Ĝ =
⋃t
i=1 Ĝi. Let i ∈ {1, . . . , t} and let b,u1, . . . ,ur ∈

Nk × Nl be such that

Gi =

 b +
r∑
j=1

njuj

∣∣∣∣∣∣ nj ∈ N

 .

Define the vectors v1, . . . ,vr ∈ Nk × Nl × Nl as vj = (uj , 0
l). Here, 0l denotes the vector in Nl

consisting of all zeros. In other words, let vj be uj on its first k + l coordinates and 0 on its last l
coordinates. Similarly define b′ = (b, 0l).

Also, for each j ∈ {1, . . . , l} define vr+j = (0k, 0j−110l−j , 0j−110l−j). (i.e., a single 1 in the
position corresponding to the jth output coordinate, one for yP and one for yC). Without the
vectors vr+j , the set of points defined by b′,v1, . . . ,vr would be simply Gi with l 0’s appended to
the end of each vector. By adding the vectors vr+j , for each (x,y) ∈ Gi and each yP ,yC ∈ Nl
such that y = yP − yC , we have that (x,yP ,yC) = b′ +

∑r+1
j=1 njvj for some n1, . . . , nr+l ∈ N;

in particular, for n1, . . . , nr chosen such that (x,y) = b +
∑r

j=1 njuj and nr+j = yC(j) for each
j ∈ {1, . . . , l}.

Thus Ĝi =
{

b′ +
∑r+l

j=1 njvj

∣∣∣ nj ∈ N
}
, whence Ĝi is linear.
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Lemmas 3.1 and 3.2 immediately imply the following theorem.

Theorem 3.4. A function f : Nk → Nl is stably computable by a CRC if and only if it is semilinear.

One unsatisfactory aspect of Lemma 3.2 is that we do not reduce the computation of f directly
to a CRD deciding the graph G of f , but rather to D deciding a related set Ĝ. It is not clear
how to directly reduce to a CRD deciding G since it is not obvious how to modify such a CRD to
monotonically produce extra species that could be processed by the CRC computing f . Lemma 3.1,
on the other hand, directly uses C as a black-box. Although we know that C, being a chemical
reaction computer, is only capable of computing semilinear functions, if we imagine that some ex-
ternal powerful “oracle” controlled the reactions of C to allow it to stably compute a non-semilinear
function, then D would decide that function’s graph. Thus Lemma 3.1 is more like the black-box
oracle Turing machine reductions employed in computability and complexity theory, which work
no matter what mythical device is hypothesized to be responsible for answering the oracle queries.

4 Deterministic computation of semilinear functions in O(‖x‖ log ‖x‖)
time

Lemma 3.2 describes how a CRC can deterministically compute any semilinear function. However,
there are problems with this construction if we attempt to use it to evaluate the speed of semilinear
function computation in the kinetic model. First, the configuration space is unbounded for any
input since the construction searches over outputs without setting bounds. Thus, more care must
be taken to ensure that any infinite execution sequence will be fair with probability 1 in the kinetic
model. What is more, since the maximum molecular count is unbounded, it is not clear how to
set the volume for the time analysis. Even if we attempt to properly define kinetics, it seems like
any reasonable time analysis of the random search process will result in expected time at least
exponential in the size of the output.9

For our asymptotic time analysis, let the input size n = ‖x‖ be the number of input molecules.
The total molecular count attainable will always be O(n); thus, by the finite density constraint,
we assume the volume v = Θ(n). We now describe a direct construction for computing semilinear
functions in O(n log n) time that does not rely on the search technique explored in the previous
section, but rather uses the mathematical structure of the semilinear graph.

For the asymptotic running time analysis, we will repeatedly assume that reactions complete
“sequentially”: upstream reactions complete before downstream ones start. Although this is unre-
alistic, it provides an upper bound on the computation time that is easy to calculate. Note that in
proving the correctness of our CRN algorithms we cannot make this assumption, because we must
show that the computation is correct no matter in what order the reaction occur.

We use the technique of “running multiple CRNs in parallel” on the same input. To accomplish
this it is necessary to split the inputs X1, . . . , Xk into separate molecules using a reaction Xi →
X1
i + X2

i + . . . + Xp
i , which will add only O(log n) to the time complexity by Lemma 2.3, so that

each of the p separate parallel CRNs do not interfere with one another. For brevity we omit stating
this formally when the technique is used.

We require the following theorem, due to Angluin, Aspnes, Diamadi, Fischer, and René [1],
which states that any semilinear predicate can be decided by a CRD in expected time O(n log n).

9The random walk is biased downward because of the increasing propensities of the reactions consuming Yi’s.
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(This was subsequently reduced to O(n) by Angluin, Aspnes, and Eisenstat [3], but O(n log n)
suffices for our purpose.)

Theorem 4.1 ( [1]). Let φ : Nk → {0, 1} be a semilinear predicate. Then there is a stable CRD D
that decides φ, and the expected time to reach an output-stable state is O(n log n), where n is the
number of input molecules.

The next lemma shows that affine partial functions can be computed in expected time O(n log n)
by a CRC. For its use in proving Theorem 4.4, we require that the output molecules be produced
monotonically. Unfortunately, this is impossible for general affine partial functions. For example,
consider the function f(x1, x2) = x1−x2 where the domain of f is dom f = { (x1, x2) | x1 ≥ x2 }.
By withholding a single copy of X2 and letting the CRC stabilize to the output value #Y =
x1− x2 + 1, then allowing the extra copy of X2 to interact, the only way to stabilize to the correct
output value x1− x2 is to consume a copy of the output species Y . Therefore Lemma 4.2 is stated
in terms of an encoding of affine partial functions that allows monotonic production of outputs,
encoding the output value y(j) as the difference between the counts of two monotonically produced
species Y P

j and Y C
j , using the same technique used in the proofs of Lemmas 3.1 and 3.2.

Let f : Nk 99K Nl be an affine partial function, where, letting y = f(x), for all j ∈ {1, . . . , l},
y(j) = bj + 1

dj

∑k
i=1 ni,j(x(i) − ci) for integer ni,j and nonnegative integer bj , ci, and dj . Define

f̂ : Nk 99K Nl×Nl as follows. For each x ∈ dom f , define yC ∈ Nl for each j ∈ {1, . . . , l} as yC(j) =
− 1
dj

∑k
i=1 min{0, ni,j}(x(i)−ci). That is, yC(j) is the negation of the j’th coordinate of the output

if taking the weighted sum of the inputs on only those coordinates with a negative coefficient ni,j .
The value yP (j) is then similarly defined for all the positive coefficients and the bj offset: for each

x ∈ dom f , define yP ∈ Nl for each j ∈ {1, . . . , l} as yP (j) = bj + 1
dj

∑k
i=1 max{0, ni,j}(x(i)− ci).

Because x(i) − ci ≥ 0, yP and yC are always nonnegative. Then if y = f(x), we have that
y = yP − yC . Define f̂ as f̂(x) = (yP ,yC).

Lemma 4.2. Let f : Nk 99K Nl be an affine partial function. Then there is a CRC that computes
f̂ : Nk 99K Nl×Nl in expected time O(n log n), where n is the number of input molecules, such that
the output molecules monotonically increase with time (i.e. none are ever consumed), and at most
O(n) molecules are ever produced.

Proof. If (yP ,yC) = f̂(x), then there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l + k nonneg-
ative integers b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈ N such that, for each j ∈ {1, . . . , l}, yC(j) =
−
∑k

i=1
1
dj

min{0, ni,j}(x(i)−ci) and yP (j) = bj+
1
dj

∑k
i=1 max{0, ni,j}(x(i)−ci). Define the CRC as

follows. It has input species Σ = {X1, . . . , Xk} and output species Γ = {Y P
1 , . . . , Y

P
l , Y

C
1 , . . . , Y C

l }.
For each j ∈ {1, . . . , l}, start with bj copies of Y P

j . This accounts for the bj offsets.

For each i ∈ {1, . . . , k}, start with a single molecule C0
i , and for each m ∈ {0, . . . , ci − 1}, add

the reactions

Cmi +Xi → Cm+1
i (4.1)

Ccii +Xi → Ccii +X ′i (4.2)

This accounts for the ci offsets by eventually producing x(i)− ci copies of X ′i. Reaction (4.1) takes
expected time O(n) to complete because each reaction instance takes expected time at most O(n)
(since this is the slowest time for any reaction in volume O(n)) and a constant number, ci, of such
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reaction instances must take place. Once Ccii is produced (hence there are now x(i)− ci copies of
Xi), reaction (4.2) takes time O(n log n) to complete by Lemma 2.4.

For each i ∈ {1, . . . , k}, add the reaction

X ′i → Xi,1 +Xi,2 + . . .+Xi,l (4.3)

This allows each output to be associated with its own copy of the input. Reaction (4.3) takes time
O(log n) to complete by Lemma 2.3.

For each i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, if ni,j > 0, add the reaction

Xi,j → ni,jZ
P
j (4.4)

and if ni,j < 0, add the reaction

Xi,j → (−ni,j)ZCj (4.5)

Reaction (4.4) produces dj(yP (j)− bj) copies of ZPj , and reaction (4.5) produces djyC(j) copies of

ZCj . Each takes time O(log n) to complete by Lemma 2.3.

Finally, to produce the correct number of Y P
j and Y C

j output molecules, we must divide the

count of each ZPj and ZCj by dj . For each j ∈ {1, . . . , l}, start with a single copy of a molecule

D0,P
j and another D0,C

j . For each j ∈ {1, . . . , l} and each m ∈ {0, . . . , dj − 1}, add the reactions

Dm,P
j + ZPj →

{
Dm+1,P
j , if m < dj − 1;

D0,P
j + Y P

j , if m = dj − 1.

Dm,C
j + ZCj →

{
Dm+1,C
j , if m < dj − 1;

D0,C
j + Y C

j , if m = dj − 1.

By Lemma 2.4, each of these reactions requires time O(n log n) to complete.

The next lemma characterizes semilinear functions as finite piecewise linear functions, where
each of the pieces is defined over an input domain that is a linear set. This will enable us to use
CRCs as constructed in Lemma 4.2 to compute semilinear functions in Lemma 4.4.

Lemma 4.3. Let f : Nk → Nl be a semilinear function. Then there is a finite set {f1 : Nk 99K
Nl, . . . , fm : Nk 99K Nl} of affine partial functions, where each dom fi is a linear set, such that, for
each x ∈ Nk, if fi(x) is defined, then f(x) = fi(x), and

⋃m
i=1 dom fi = Nk.

We split the semilinear function into partial functions, each with a graph that is a linear set.
The non-trivial aspect of our argument is showing that (straightforward) linear algebra over the
reals can be used to solve our problem about integer arithmetic. For example, consider a partial
function defined by the following linear graph: b = 0, u1 = (1, 1, 1), u2 = (2, 0, 1), u3 = (0, 2, 1)
(where the first two coordinates are inputs and the last coordinate is the output). Note that the
set of points where this function is defined is where x1 + x2 is even. Given an input point x, the
natural approach to evaluating the function is to solve for the coefficients n1, n2, n3 such that x
can be expressed as a linear combination of u1,u2,u3 restricted to the first two coordinates. Then
the linear combination of the last coordinate of u1,u2,u3 with coefficients n1, n2, n3 would give the
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output. However, the vectors u1,u2,u3 are not linearly independent (yet this linear set cannot be
expressed with less than three basis vectors — illustrating the difference between real spaces and
integer-valued linear sets), so there are infinitely many real-valued solutions for the coefficients. We
show that ui must span a real subspace with at most one output value for any input coordinates.
Then we can throw out a vector (say u1) to obtain a set of linearly independent vectors (u2,u3)
and solve for n2, n3 ∈ R, and let n1 = 0. In this example, the resulting partial affine function is
f(x1, x2) = (x1 + x2)/2.

Proof of Lemma 4.3. Let G =
{

(x,y) ∈ Nk × Nl
∣∣ f(x) = y

}
be the graph of f . Since G is

semilinear, it is a finite union of linear sets {L1, . . . , Ln}. It suffices to show that each of these
linear sets Lm is the graph of an affine partial function. Since Lm is linear, its projection onto
any subset of its coordinates is linear. Therefore dom fm (the projection of Lm onto its first k
coordinates) is linear.

We consider each output coordinate separately, since if we can show that each y(j) is an
affine function of x, then it follows that y is an affine function of x. Fix j ∈ {1, . . . , l}. Let L′m
be the (k + 1)-dimensional projection of Lm onto the coordinates defined by x and y(j), which
is linear because Lm is. Since L′m is linear, there exist vectors b,u1, . . . ,up ∈ Nk+1 such that
L′m = { b + n1u1 + . . .+ npup | n1, . . . , np ∈ N } .

Consider the real-vector subspace spanned by u1, . . . ,up. It cannot contain the vector j =
(0, . . . , 0, 1)T . Suppose it does. Take a subset of linearly independent vectors spanning this subspace
from the above list (we possibly remove some linearly dependent vectors); say u1, . . . ,up′ . The
unique solution to the coefficients ξ1, . . . , ξp′ ∈ R such that j = ξ1u1 + . . .+ ξp′up′ can be obtained
by using the left-inverse of the matrix with columns u1, . . . ,up′ (the left inverse exists because
the matrix is full-rank). Since the elements of the left-inverse matrix are rational functions of the
matrix elements, and vectors u1, . . . ,up′ consist of numbers in N, the coefficients ξ1, . . . , ξp′ are
rational. We can multiply all the coefficients by the least common multiple of their denominators
c yielding cj = m1u1 + . . .+mp′up′ where m1, . . . ,mp′ ∈ Z. Now consider a point a in L′m defined
as b + n1u1 + . . .+ np′up′ , where ni ∈ N. Define n′i = ni +mi. We choose a such that ni are large
enough that n′i ≥ 0. Since n′i ∈ N, we have that both a and a + cj = b + n′1u1 + . . .+ n′p′up′ are in
L′m. This is a contradiction because L′m is the graph of a partial function and cannot contain two
different points that agree on their first k coordinates. Therefore j is not contained in the span of
u1, . . . ,up.

Consider again the real-vector subspace spanned by u1, . . . ,up. Again, let u1, . . . ,up′ be a subset
of linearly independent vectors spanning this subspace. Since j is not in it, the subspace must be at
most k dimensional. If it is strictly less than k dimensional, add enough vectors in Nk+1 to the basis
set for the spanned subspace to be exactly k-dimensional but not include j. Call this new set of k
linearly independent vectors w1, . . . ,wk, where wi = ui for i ∈ {1, . . . , p′}. Let v1, . . . ,vk ∈ Nk be
w1, . . . ,wk restricted to the first k coordinates. The fact that w1, . . . ,wk are linearly independent,
but j is not in the subspace spanned by them, implies that v1, . . . ,vk are linearly independent as
well. This can be seen as follows. If v1, . . . ,vk were not linearly independent, then we could write
vk = ξ1v1 + . . .+ ξk−1vk−1 for some ξi ∈ R. However, wk 6= w′k , ξ1w1 + . . .+ ξk−1wk−1. Since j is
proportional to w′k−wk, we obtain a contradiction. Therefore v1, . . . ,vk are linearly independent.

We now describe how to construct an affine function y(j) = f(x) for L′m from w1, . . . ,wk. Let
matrix V be the square matrix with v1, . . . ,vk as columns. Let b′ be b restricted to its first k
coordinates. We claim that y(j) = b(k+1)+(w1(k+1), . . . ,wk(k+1)) ·V−1 ·(x− b′). Below we’ll
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show that this expression computes the correct value y(j). But first we show that it defines a partial
affine function f(x). Because v1, . . . ,vk are linearly independent, the inverse V−1 is well-defined.
We need to show f(x) = bj + 1

dj

∑k
i=1 ni,j(x(i)− ci) for integer ni,j and nonnegative integer bj , ci,

and dj , and that on the domain of f , x(i)−ci ≥ 0. The offset bj = b(k+1), which is a non-negative
integer because b is a vector of non-negative integers. Since the offset vector b′ is the same for each
output dimension, and it is likewise non-negative, we obtain the offset ci = b′(i). Further, since
V−1 consists of rational elements (because V consists of elements in N), we can define dj and ni,j
as needed. Finally, note that the least value of x(i) that could be in L′m is b′(i) = ci, and thus on
the domain of f , x(i)− ci ≥ 0.

Finally, we show that this expression computes the correct value y(j). Let (ξ1, . . . , ξk)
T ,

V−1 · (x − b′), which implies that x = b′ +
∑k

i=1 ξivi. If our value of y(j) is incorrect, then

∃n1, . . . , np ∈ N such that b+
∑p

i=1 niui and b+
∑k

i=1 ξiwi agree on the first k coordinates but not
on the k + 1st. Recall that the real-vector subspace spanned by w1, . . . ,wk includes the subspace
spanned by u1, . . . ,up but does not include j. But

∑p
i=1 niui −

∑k
i=1 ξiwi is proportional to j and

lies in the subspace spanned by w1, . . . ,wk. Therefore we obtain a contradiction, implying that
our value of y(j) is computed correctly.

The next lemma shows that every semilinear function f can be computed by a CRC in O(n log n)
time. It uses a systematic construction based on breaking down f into a finite number of partial
affine functions f1, . . . , fm, in which deciding which fi to apply is itself a semilinear predicate.
Intuitively, the construction proceeds by running many CRCs and CRDs in parallel on input x,
computing all fi’s and all predicates of the form φi = “x ∈ dom fi?” The φi predicate computation
is used to activate (in the case of a “true” answer) or deactivate (in case of “false”) the outputs
of fi. Since eventually one CRD stabilizes to “true” and the remainder to “false”, eventually the
outputs of one fi are activated and the remainder deactivated, so that the value f(x) is properly
computed.

Lemma 4.4. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably computes f , and
the expected time for C to reach a count-stable configuration on input x is O(n log n), where n is
the number of input molecules (the O() constant depends on f but not on n).

Proof. The CRC will have input species Σ = {X1, . . . , Xk} and output species Γ = {Y1, . . . , Yl}.
By Lemma 4.3, there is a finite set {f1 : Nk 99K Nl, . . . , fm : Nk 99K Nl} of affine partial

functions, where each dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is defined, then
f(x) = fi(x). We compute f on input x as follows. Since each dom fi is a linear (and therefore
semilinear) set, we compute each predicate φi = “x ∈ dom fi and (∀i′ ∈ {1, . . . , i−1}) x 6∈ dom fi′?”
by separate parallel CRD’s. The latter condition ensures that for each x, precisely one of the
predicates is true, in case the domains of the partial functions have nonempty intersection.

By Lemma 4.2, we can compute each f̂i by parallel CRC’s. Assume that for each i ∈ {1, . . . ,m}
and each j ∈ {1, . . . , l}, the jth pair of outputs yP (j) and yC(j) of the ith function is represented
by species Ŷ P

i,j and Ŷ C
i,j . We interpret each Ŷ P

i,j and Ŷ C
i,j as an “inactive” version of “active” output

species Y P
i,j and Y C

i,j .
For each i ∈ {1, . . . ,m}, we assume that the CRD computing the predicate φi represents its

output by voting species Ti to represent “true” and Fi to represent “false”. Then add the following
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reactions for each i ∈ {1, . . . ,m} and each j ∈ {1, . . . , l}:

Ti + Ŷ P
i,j → Ti + Y P

i,j + Yj (4.6)

Fi + Y P
i,j → Fi +Mi,j (4.7)

Mi,j + Yj → Ŷ P
i,j (4.8)

The latter two reactions implement the reverse direction of the first reaction using only bimolecular
reactions. Also add the reactions

Ti + Ŷ C
i,j → Ti + Y C

i,j (4.9)

Fi + Y C
i,j → Fi + Ŷ C

i,j (4.10)

and

Y P
i,j + Y C

i,j → Kj (4.11)

Kj + Yj → ∅ (4.12)

That is, a “true” answer for function i activates the ith output and a “false” answer deactivates
the ith output. Eventually each CRD stabilizes so that precisely one i has Ti present, and for all
i′ 6= i, Fi′ is present. At this point, all outputs for the correct function f̂i are activated and all other
outputs are deactivated. The reactions enforce that at any time, #Yj = #Kj+

∑m
i=1(#Y P

i,j+#Mi,j).
In particular, #Yj ≥ #Kj and #Yj ≥ #Mi,j at all times, so there will never be a Kj or Mi,j

molecule that cannot participate in the reaction of which it is a reactant. Eventually #Y P
i,j and

#Y C
i,j stabilize to 0 for all but one value of i (by reaction (4.10)), and for this value of i, #Y P

i,j

stabilizes to y(j) and #Y C
i,j stabilizes to 0 (by reaction (4.11)). Eventually #Kj stabilizes to 0 by

reaction (4.12). Eventually #Mi,j stabilizes to 0 since Fi is absent for the correct function f̂i. This
ensures that #Yj stabilizes to y(j).

It remains to analyze the expected time to stabilization. Recall n = ‖x‖. By Lemma 4.2,
the expected time for each affine function computation to complete is O(n log n). Since we have m
parallel computations, and m depends on f but not n, the expected time for all of the computations
to complete is O(n log n). We must also wait for each predicate computation to complete. By
Theorem 2.1, each of these predicates takes expected time at most O(n log n) to complete, so again
all of them complete in expected time O(n log n).

Eventually, the Ti leaders must convert inactive output species to active, and Fi′ (for i′ 6= i)
must convert active output species to inactive. By Lemma 2.4, each of these requires at most
O(n log n) expected time, and therefore they all complete in expected time at most O(n log n).
Finally, reactions (4.11) and (4.12) are at least as fast as the process described in Lemma 2.4.
Thus it takes O(n log n) expected time for reactions (4.11) and (4.12) to consume all Y C

i,j and Kj

molecules, at which point the system has stabilized.

5 Optimization to polylog(‖x‖) time

Angluin, Aspnes, and Eisenstat combined the slow, deterministic predicate-deciding results of [2]
with a fast, error-prone simulation of a bounded-space Turing machine to show that semilinear
predicates can be computed without error in expected polylogarithmic time [3]. We show that
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a similar technique implies that semilinear functions can be computed by CRNs without error in
expected polylogarithmic time in the kinetic model, combining the same Turing machine simulation
with our O(n log n) construction described in Lemma 4.4.

We in fact use the construction of [3] in order to conduct the fast, error-prone computation in
our proof of Theorem 5.2. The next theorem formalizes the properties of that construction that we
require.

Theorem 5.1 ( [3]). Let f : Nk → Nl be a function by a t(m)-time-bounded, s(m)-space-bounded
Turing machine, where m ≈ log n is the input length in binary, and let c ∈ N. Then there is a
CRC C that computes f correctly with probability at least 1 − n−c, and the expected time for C
to reach a count-stable configuration is O(t(m)5). Furthermore, the total molecular count never
exceeds O(2s(m)).

Semilinear functions on an m-bit input can be computed in time O(m) and space O(m) on
a Turing machine. Therefore the bounds on CRC expected time and molecular count stated in
Theorem 5.1 are O(log5 n) and O(n), respectively, when expressed in terms of the number of input
molecules n.

Theorem 5.1 is a rephrasing of the main result of Angluin, Aspnes, and Eisenstat [3]. However,
a modification of their construction is required to achieve “uniformity” with respect to input size.
Rephrasing their construction to our language of CRNs, they allow a different amount of “fuel”
species (call it F ) for every input size. Indeed, because their model exclusively uses two-reactant,
two-product reactions, and thus preserves the total molecular count, this non-uniformity is neces-
sary: the required amount of fuel molecules depends on the space usage s(m), so that the tape
of the Turing machine can be accurately represented throughout the computation. We, however,
require a uniform initial state. Luckily, we do not need to supply these fuel molecules as part of
the input configuration. Instead, these fuels may be generated from the inputs by letting the first
reaction of the input Xi be Xi → X ′i + cF , where X ′i is the input interacting with the rest of the
CRC, and c ∈ N is chosen large enough that the CRC of [3] will not run out of F molecules. Since
the CRC of [3] is used here only to compute semilinear functions, which require only O(n) space
to compute on a Turing machine, c · n copies of F are sufficient to run this CRC if c is sufficiently
large.

The following theorem is the main theorem of this section.

Theorem 5.2. Let f : Nk → Nl be semilinear. Then there is a CRC C that stably computes f , and
the expected time for C to reach a count-stable configuration is O(log5 n), where n is the number of
input molecules.

Proof. Our CRC will use the counts of Yj for each output dimension y(j) as the global output, and
begins by running in parallel:

1. A fast, error-prone CRC F to compute y = f(x) with high probability, as in Theorem 5.1.
For any constant c > 0, we can design F so that it is correct and finishes in time O(log5 n)
with probability at least 1 − n−c, while never reaching total molecular count higher than
O(n). We modify the CRC to store the output in three separate sets of species Yj (the global
output), Bj , and Cj redundantly (i.e. y = b = c) as follows. Upon halting F copies an

“internal” output species Ŷj to Yj , Bj , and Cj through reactions H + Ŷj → H +Yj +Bj +Cj
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(in asymptotically negligible time).10 In this way we are guaranteed that the amount of Yj
produced by C is the same as the amounts of Bj and Cj no matter whether its computation is
correct or not. This redundant storage is used for later comparison and possible replacement
with the slow, deterministic CRC (described next).

2. A slow, deterministic CRC S for y′ = f(x). It is constructed as in Lemma 4.4, running in
expected O(n log n) time.

3. A slow, deterministic CRD D for the semilinear predicate “b = f(x)?”. It is constructed as
in Theorem 2.1 and runs in expected O(n) time.

Following Angluin, Aspnes, and Eisenstat [3], we construct a “timed trigger” as follows, using a
single leader molecule, a single “marker” molecule, and n = ‖x‖ “interfering” molecules. To ensure
that there are always n interfering molecules, we can let them be the input molecules, and a special
species I that is generated in the reactions Xi → I +X ′i, where X ′i is the input species interacting
with the remainder of the CRC. The leader will then interact with both Xi and I as interfering
molecules.

The leader fires the trigger if it encounters the marker molecule, M , d times without any
intervening reactions with the interfering molecules, where d is a constant. Note that choosing d
larger increases the expected time for this event to happen, since it becomes more likely that the
leader encounters an interfering molecule before encountering the M molecule d times in a row.
This happens rarely enough that with high probability the trigger fires after F and D finishes (time
analysis is presented below). When the trigger fires, it checks if D is outputting a “no” (e.g. has a
molecule of L0), and if so, produces a molecule of Pfix. This indicates that the output of the fast
CRC F is not to be trusted, and the system should switch from the possible erroneous result of F
to the sure-to-be correct result of S.

Once a Pfix is produced, the system converts the output molecules Y ′j of the slow, deterministic
CRC S to the global output Yj , and kills enough of the global output molecules to remove the ones
produced by the fast, error-prone CRC:

Pfix + Y ′j → Pfix + Yj (5.1)

Pfix + Cj → Pfix + Y j (5.2)

Yj + Y j → ∅. (5.3)

Finally, Pfix triggers a process consuming all species of F other than Yj , Bj , and Cj in expected
O(log n) time so that afterward, F cannot produce any output molecules. More formally, let QF
be the set of all species used by F . For all X ∈ QF \

⋃l
j=1{Yj , Bj , Cj}, add the reactions

Pfix +X → Pfix +K (5.4)

K +X → K +K, (5.5)

where K 6∈ QF is a unique species.
First, observe that the output will always eventually converge to the right answer, no matter

what happens: If Pfix is eventually produced, then the output will eventually be exactly that given

10Here, H is some species that is guaranteed with high probability to be absent until F has halted, and then to
increase to large (Ω(n)) count in asymptotically negligible time.
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by S which is guaranteed to converge correctly. If Pfix is never produced, then the fast, error-prone
CRC must produce the correct amount of Yj — otherwise, D will detect a problem.

For the expected time analysis, let us first analyze the trigger. The probability that the trigger
leader will fire on any particular reaction number is at most n−d. In time n2, the expected number
of leader reactions is O(n2). Thus, the expected number of firings of the trigger in n2 time is
n−d+2. This implies that the probability that the trigger fires before n2 time is at most n−d+2. The
expected time for the trigger to fire is O(nd).

We now consider the contribution to the total expected time from 3 cases:

1. F is correct, and the trigger fires after time n2. There are two subcases: (a) F finishes before
the trigger fires. Conditional on this, the whole system converges to the correct answer, never
to change it again, in expected time O(log5 n). This subcase contributes at most O(log5 n)
to the total expected time. (b) F finishes after the trigger fires. In this case, we may produce
a Pfix molecule and have to rely on the slow CRC S. The probability of this case happening
is at most n−c. Conditional on this case, the expected time for the trigger to fire is still
O(nd). The whole system converges to the correct answer in expected time O(nd), because
everything else is asymptotically negligible. Thus the contribution of this subcase to the total
expectation is at most O(n−c · nd) = O(n−c+d).

2. F is correct, but the trigger fires before n2 time. In this case, we may produce a Pfix molecule
and have to rely on the slow CRC S for the output. The probability of this case occurring is
at most n−d+2. Conditional on this case occurring, the expected time for the whole system
to converge to the correct answer can be bounded by O(n2). Thus the contribution of this
subcase to the total expectation is at most O(n−d+2 · n2) = O(n−d+4).

3. F fails. In this case we’ll have to rely on the slow CRC S for the output again. Since this
occurs with probability at most n−c, and the conditional expected time for the whole system
to converge to the correct answer can be bounded by O(nd) again, the contribution of this
subcase to the total expectation is at most O(n−c · nd) = O(n−c+d).

So the total expected time is bounded by O(log5 n) + O(n−c+d) + O(n−d+4) + O(n−c+d) =
O(log5 n) for d > 4, c > d.

6 Conclusion

We defined deterministic computation of CRNs corresponding to the intuitive notion that certain
systems are guaranteed to converge to the correct answer no matter what order the reactions
happen to occur in. We showed that this kind of computation corresponds exactly to the class
of functions with semilinear graphs. We further showed that all functions in this class can be
computed efficiently.

A work on chemical computation can stumble by attempting to shoehorn an ill-fitting compu-
tational paradigm into chemistry. While our systematic construction may seem complex, we are
inspired by examples like those shown in Fig. 1 that appear to be good fits to the computational
substrate. While delineation of computation that is “natural” for a chemical system is necessarily
imprecise and speculative, it is examples such as these that makes us satisfied that we are studying
a form of natural chemical computation.
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In theoretical computer science, the notion of randomized computation has received significant
attention. However, the additional computational power given by error-prone computation com-
pared with deterministic computation is usually rather limited. For example, the class of languages
decided by Turing machines, whether they are required to be deterministic or randomized (or even
nondeterministic), is the same. In the case of polynomial-time Turing machines, it is widely con-
jectured [20] that P = BPP, i.e., that randomization adds at most a polynomial speedup to any
predicate computation. In contrast, CRNs are unusual in the large gap between the power of ran-
domized and deterministic computation: While randomized CRNs can simulate arbitrary Turing
machines with high probability [25], deterministic computation is severely limited to semilinear
functions only.

Our systematic constructions (unlike the examples in Fig. 1) rely on a carefully chosen initial
context — the “extra” molecules that are necessary for the computation to proceed. Some of these
species need to be present in a single copy (“leader”). We left unanswered whether it may be
possible to dispense with this level of control of the chemical environment, but this question has
since been answered affirmatively by Doty and Hajiaghayi [12]. However, the construction of [12]
runs in expected time O(n); it remains open whether there is are leaderless CRNs computing any
semilinear function in sublinear expected time.

In contrast to the CRN model discussed in this paper, which is appropriate for small chemical
systems in which every single molecule matters, classical “Avogadro-scale” chemistry is modeled
using real-valued concentrations that evolve according to mass-action ODEs. Moreover, despite
relatively small molecular counts, many biological chemical systems are well-modeled by mass-
action ODEs. While the scaling of stochastic CRNs to mass-action systems is understood from
a dynamical systems perspective [17], little work has been done comparing their computational
abilities. There are hints that single/few-molecule CRNs perform a fundamentally different kind
of computation. For example, recent theoretical work has investigated whether CRNs can tolerate
multiple copies of the network running in parallel finding that they can lose their computational
abilities [9, 10].

Does our notion of deterministic computation have an equivalent in mass-action systems? Con-
sider what happens when the CRN shown in Fig. 1(c) is viewed as a mass-action reaction network,
with (non-negative) real-valued inputs [X1]0, [X2]0 and output [Y ]∞ (where we use the standard
mass-action convention: [·]0 for the initial concentration, and [·]∞ for the equilibrium concentra-
tion). In the limit t → ∞, the mass-action system will converge to the correct output amount of
[Y ]∞ = max([X1]0, [X2]0), and moreover, the output amount is independent of what (non-zero) rate
constants are assigned to the reactions. Thus one is tempted to connect the notion of determinis-
tic computation studied here and the property of robustness to rate parameters of a mass-action
system. Parameter robustness is a recurring motif in biologically relevant reaction networks due to
much evidence that biological systems tend to be robust to parameters [5].

However, the connection is not simple. Consider the CRN shown in Fig. 1(a). In the mass-
action limit it loses the ability of computing the floor function, but still computes [Y ]∞ = [X]0/2
for real valued [X]0, [Y ]∞, independent of reaction rates. More interestingly, the CRN shown
in Fig. 1(b), when considered as a mass-action reaction network, could converge to a different
amount of Y as t → ∞, depending on the rate constants of the last two reactions and the input
amounts. Specifically, let k1, k2, and k3 be the rate constants of the three reactions, respectively.
If [X1]0 > [X2]0 and k2 ≤ k3[X2]0/([X1]0 − [X2]0), then Y will go to k2/k3([X1]0 − [X2]0) rather
than [X2]0 as in Fig. 1(b). In all other cases, the output will correctly match the function in the
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figure. (This can be verified by determining the steady states of the system and then determining
the stability of each one as a function of the initial concentrations and rate constants.) The cause
of the disagreement between stochastic and mass-action instances of this CRN can be identified
with the “type I” deviant effect demarcated by Samoilov and Arkin [23].
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