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Abstract. Biological regulatory networks depend upon chemical inter-
actions to process information. Engineering such molecular computing
systems is a major challenge for synthetic biology and related fields. The
chemical reaction network (CRN) model idealizes chemical interactions,
abstracting away specifics of the molecular implementation, and allowing
rigorous reasoning about the computational power of chemical kinetics.
Here we focus on function computation with CRNs, where we think of
the initial concentrations of some species as the input and the eventual
steady-state concentration of another species as the output. Specifically,
we are concerned with CRNs that are rate-independent (the computa-
tion must be correct independent of the reaction rate law) and compos-
able (f ◦ g can be computed by concatenating the CRNs computing f
and g). Rate independence and composability are important engineering
desiderata, permitting implementations that violate mass-action kinet-
ics, or even “well-mixedness”, and allowing the systematic construction
of complex computation via modular design. We show that to construct
composable rate-independent CRNs, it is necessary and sufficient to en-
sure that the output species of a module is not a reactant in any reac-
tion within the module. We then exactly characterize the functions com-
putable by such CRNs as superadditive, positive-continuous, and piece-
wise rational linear. Our results show that composability severely limits
rate-independent computation unless more sophisticated input/output
encodings are used.

1 Introduction

A ubiquitous form of biological information processing occurs in complex chem-
ical regulatory networks in cells. The formalism of chemical reaction networks
(CRNs) has been widely used for modelling the interactions underlying such
natural chemical computation. More recently CRNs have also become a useful
model for designing synthetic molecular computation. In particular, DNA strand
displacement cascades can in principle realize arbitrary CRNs, thus motivating
the study of CRNs as a programming language [2, 5, 11]. The applications of syn-
thetic chemical computation include reprogramming biological regulatory net-
works, as well as embedding control modules in environments that are inherently

? These authors’ work was supported in part by National Science Foundation grants
CCF-1618895 and CCF-1652824.



incompatible with traditional electronic controllers for biochemical, nanotechno-
logical, or medical applications.

The study of information processing within biological CRNs, as well the en-
gineering of CRN functionality in artificial systems, motivates the exploration
of the computational power of CRNs. In general, CRNs are capable of Turing
universal computation [7]; however, we are often interested in restricted classes
of CRNs which may have certain desired properties. Previous work distinguished
two programmable features of CRNs: the stoichiometry of the reactions and the
rate laws governing the reaction speeds [4]. As an example of computation by
stoichiometry alone, consider the reaction 2X → Y . We can think of the concen-
trations of species X and Y to be the input and output, respectively. Then this
reaction effectively computes f(X) = X

2 , as in the limit of time going to infinity,
the system converges to producing one unit of Y for every two units of X ini-
tially present. The reason we are interested in computation via stoichimetry is
that it is fundamentally rate-independent, requiring no assumptions on the rate
law (e.g., that the reaction occurs at a rate proportional to the product of the
concentrations of the reactants). This allows the computation to be correct inde-
pendent of experimental conditions such as temperature, chemical background,
or whether or not the solution is well-mixed.

Computation does not happen in isolation. In an embedded chemical con-
troller, inputs would be produced by other chemical systems, and outputs would
affect downstream chemical processes. Composition is easy in some systems (e.g.
digital electronic circuits can be composed by wiring the outputs of one to the
inputs of the other). However, in other contexts composition presents a host of
problems. For example, the effect termed retroactivity, which results in insuffi-
cient isolation of modules, has been the subject of much research in synthetic
biology [6]. In this paper, we attempt to capture a natural notion of compos-
able rate-independent computation, and study whether composability restricts
computational power.

X1 +X2 → Y

(a)

X1 → Z1 + Y

X2 → Z2 + Y

Z1 + Z2 → K

Y +K → ∅
(b)

Above, we see two examples of rate-independent computation. Example (a)
shows y = min(x1, x2). The amount of Y eventually produced will be the mini-
mum of the initial amounts of X1 and X2, since the reaction will stop as soon as
the first reactant runs out. Example (b) shows y = max(x1, x2). The amount of
Y eventually produced in reactions 1 and 2 is the sum of the initial amounts of
X1 and X2. The amount of K eventually produced in reaction 3 is the minimum
of the initial amounts of X1 and X2. Reaction 4 subtracts the minimum from
the sum, yielding the maximum.
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Now consider how rate-independent computation can be naturally composed.
Suppose we want to compute min(min(x1, x2), x3). It is easy to see that simple
concatenation of two min modules (with proper renaming of the species) cor-
rectly computes this function:

X1 +X2→Y

Y +X3→Y ′

where Y ′ represents the output of the composed computation. In contrast,
suppose we want to compute min(max(x1, x2), x3). Concatenating the modules
yields:

X1 → Z1 + Y

X2 → Z2 + Y

Z1 + Z2 → K

Y +K → ∅
Y +X3 → Y ′

where Y ′ represents the output of the composed computation. Observe that
depending on the relative rates of reactions 4 and 5, the eventual value of Y ′

will vary between min(max(x1, x2), x3) and min(x1+x2, x3), and the composition
does not compute in a rate-independent manner.

Why is min composable, but max not? The problem arose because the output
of the max module (Y ) is consumed in both the max module and in the down-
stream module (min). This creates a competition between the consumption of
the output within its own module and the downstream module.

Towards modularity, we assume the two CRNs to be composed do not share
any species apart from the interface between them (i.e., a species Y representing
the output of the first network is used as the species representing the input
to the second network, and otherwise the two sets of species are disjoint). We
prove that to construct composable rate-independent modules in this manner,
it is necessary and sufficient to ensure that the output species of a module is
not a reactant in any reaction of that module. We then exactly characterize the
computational power of composable rate-independent computation.

Previously it was shown that without the composability restriction, rate-
independent CRNs can compute arbitrary positive-continuous, piecewise rational
linear functions [4]. Positive-continuity means that the only discontinuities occur
when some input goes from 0 to positive, and piecewise rational linear means
that the function can by defined by a finite number of linear pieces (with rational
coefficients). Note that non-linear continuous functions can be approximated to
arbitrary accuracy.1 We show that requiring the CRN to be composable restricts

1 To approximate arbitrary continuous non-linear functions, piecewise linear functions
are not sufficient, but rather we need piecewise affine functions (linear functions with
offset). However, affine functions can be computed if we use an additional input fixed
at 1.
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the class of computable functions to be superadditive functions; i.e., functions
that satisfy: for all input vectors a, b, f(a) + f(b) ≤ f(a + b). This strongly
restricts computational power: for example, subtraction or max cannot be com-
puted or approximated in any reasonable sense. In the positive direction, we
show that any superadditive, positive-continuous, piecewise rational linear func-
tion can be computed by composable CRNs in a rate-independent manner. Our
proof is constructive, and we further show that unimolecular and bimolecular
reactions are sufficient.

We note that different input and output encodings can change the com-
putational power of rate-independent, composable CRNs. For example, in the
so-called dual-rail convention, input and output values are represented by dif-
ferences in concentrations of two species (e.g., the output is equal to the con-
centration of species Y + minus the concentration of Y −). Dual-rail simplifies
composition—instead of consuming the output species to decrease the output
value, a dual-rail CRN can produce Y −—at the cost of greater system complex-
ity. Dual-rail CRNs can compute the full class of continuous, piecewise rational
linear functions while satisfying rate-independence and composability [4]. Note,
however, that the dual-rail convention moves the non-superadditive subtraction
operation to “outside” the system, and converting from a dual-rail output to a
direct output must break composability.

2 Preliminaries

Let N and R denote the set of nonnegative integers and the set of real numbers,
respectively. The set of the first n positive integers is denoted by [n]. If x ∈ R,
let R≥x = { x′ ∈ R | x′ ≥ x }, and similarly for R>x. If Λ is a finite set (in this
paper, of chemical species), we write RΛ to denote the set of functions f : Λ→ R,
and similarly for RΛ≥0, NΛ, etc. Equivalently, we view an element c ∈ AΛ as a
vector of |Λ| elements of A, each coordinate “labeled” by an element of Λ. Given
a function f : A → B, we use f |C to denote the restriction of f to the domain
C. We also use the notation c � ∆ to represent c projected onto R∆≥0. Thus,
c � ∆ = 0 iff (∀S ∈ ∆) c(S) = 0.

2.1 Chemical reaction networks

Given S ∈ Λ and c ∈ RΛ≥0, we refer to c(S) as the concentration of S in c. For

any c ∈ RΛ≥0, let [c] = {S ∈ Λ | c(S) > 0}, the set of species present in c. If

∆ ⊆ Λ, we view a vector c ∈ R∆≥0 equivalently as a vector c ∈ RΛ≥0 by assuming
c(S) = 0 for all S ∈ Λ \∆.

Given a finite set of chemical species Λ, a reaction over Λ is a pair α =
〈r,p〉 ∈ NΛ × NΛ, specifying the stoichiometry of the reactants and products,
respectively.2 In this paper, we assume that r 6= 0, i.e., we have no reactions of

2 As we are studying CRNs whose output is independent of the reaction rates, we
leave the rate constants out of the definition.
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the form ∅ → . . .. For instance, given Λ = {A,B,C}, the reaction A + 2B →
A+3C is the pair 〈(1, 2, 0), (1, 0, 3)〉. A (finite) chemical reaction network (CRN)
is a pair C = (Λ,R), where Λ is a finite set of chemical species, and R is a finite
set of reactions over Λ. A state of a CRN C = (Λ,R) is a vector c ∈ RΛ≥0. Given
a state c and reaction α = 〈r,p〉, we say that α is applicable in c if [r] ⊆ [c] (i.e.,
c contains positive concentration of all of the reactants).

2.2 Reachability and stable computation

We now follow [4] in defining rate-independent computation in terms of reach-
ability between states (this treatment is in turn based on the notion of “stable
computation” in distributed computing [1]). Intuitively, we say a state is “reach-
able” if some rate law can take the system to this state. For computation to be
rate-independent, since unknown rate laws might take the system to any reach-
able state, the system must be able to reach the correct output from any such
reachable state.

To define the notion of reachability, a key insight of [4] allows one to think of
reachability via a sequence of straight line segments. This may be unintuitive,
since mass-action3 and other rate laws trace out smooth curves. However, a
number of properties are shown which support straight-line reachability as an
interpretation which includes mass-action reachability as well as reachability
under other rate laws.

Let m = |R| be the number of reactions in CRN C, and let n = |Λ| be the
number of species in C. The n×m reaction stoichiometry matrix M is such that
M(i, j) is the net amount of the i’th species that is produced by the j’th reaction
(negative if the species is consumed). We say state d is straight-line reachable
from c, written c→1 d, if (∃u ∈ Rm≥0) c+Mu = d and u(j) > 0 only if reaction
j is applicable at c. Intuitively, a single segment means running the reactions
applicable at c at a constant (possibly 0) rate to get from c to d. We say state d is
l-segment reachable, if (∃b1, . . . , bl+1) c = b1 →1 b2 →1 b3 →1 . . .→1 bl+1 = d.
Generalizing to an arbitrary number of segments, we obtain our general notion
of reachability below. Note that by the definition of straight-line reachability,
only applicable reactions occur in each segment. The definition of reachability is
closely related to exploring the “stoichiometric compatibility class” of the initial
state [8].

Definition 1. State d is reachable from c, written c → d, if ∃l ∈ N such that
d is l-segment reachable from c for some l ∈ N.

We think of state d as being reachable from state c if there is a “reasonable”
rate law that takes the system from c to d. Not surprisingly, previous work

3 Although the formal definition of mass-action kinetics is outside the scope of this
paper, we remind the reader that a CRN with rate constants on each reaction define a
system of ODEs under mass-action kinetics. For example, the two reactions A+B →
A + C and C + C → B correspond to the following ODEs: ȧ = 0, ḃ = k2c

2 − k1ab,
and ċ = k1ab − 2k2c

2, where a, b, and c are the concentrations of species A,B, and
C over time and k1, k2 are the rate constants of the reactions.
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showed that if state d is reached from c via a mass-action trajectory, it is also
segment-reachable.

Lemma 1 (Proven in [4]). If d is mass-action reachable from c, then c→ d.

We can now use reachability to formally define rate-independent computa-
tion. Formally, a chemical reaction computer (CRC) is a tuple C = (Λ,R,Σ, Y ),
where (Λ,R) is a CRN, Σ ⊂ Λ, written as Σ = {X1, . . . , Xn}, is the set of input
species, and Y ∈ Λ \Σ is the output species. For simplicity, assume a canonical
ordering of Σ = {X1, . . . , Xn} so that a vector x ∈ Rn≥0 (i.e., an input to f) can

be viewed equivalently as a state x ∈ RΣ≥0 of C (i.e., an input to C).

Definition 2. A state o ∈ RΛ≥0 is output stable if, for all o′ such that o→ o′,
o(Y ) = o′(Y ), i.e., once o is reached, no reactions can change the concentration
of the output species Y .

Definition 3. Let f : Rn≥0 → R≥0 be a function and let C be a CRC. We say
that C stably computes f if, for all x ∈ Rn≥0 and all c such that x → c, there
exists an output stable state o such that c→ o and o(Y ) = f(x).

The results herein extend easily to functions f : Rn → Rl, i.e., whose output
is a vector of l real numbers. This is because such a function is equivalently l
separate functions fi : Rn → R.

Also note that initial states contain only the input species Σ; other species
must have initial concentration 0. We briefly discuss in the conclusion how al-
lowing some initial concentration of non-input species affects computation.

2.3 Composability

We call a CRC C = (Λ,R,Σ, Y ) output oblivious if the output species Y does not
appear as a reactant. We now show that an output oblivious CRC is composable.
For simplicity, in this section we focus on single-input, single-output CRCs, but
our results can be easily generalized to multiple input and output settings.

First, we define the composition of two CRCs as the concatenation of their
chemical reactions, such that the output species of the first is the input species
of the second:

Definition 4. Given two CRCs C1 = (Λ1, R1, Σ1, Y1) and C2 = (Λ2, R2, Σ2, Y2),
consider C′2 = (Λ′2, R

′
2, Σ

′
2, Y

′
2) constructed by renaming species of C2 such that

Λ1 ∩ Λ′2 = {Y1} and Y1 ∈ Σ′2. The composition of C1 and C2 is the CRC
C2◦1 = (Λ1 ∪ Λ′2, R1 ∪ R′2, Σ1 ∪ Σ′2 \ {Y1}, Y ′2). In other words, the composi-
tion is constructed by concatenating C1 and C2 such that their only interface is
the output species of C1, used as the input for C2.

Definition 5. A CRC C1 which stably computes f1 is composable iff ∀C2 stably
computing f2, C2◦1 stably computes f2 ◦ f1.
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We first show that output oblivious CRCs are composable. Second, we show
that if a CRC is composable then any reactions using the output species as a
reactant can be removed without affecting functionality.

Lemma 2. Output oblivious CRCs are composable.

Proof. Consider the composition C2◦1 of two CRCs C1 = (Λ1, R1, Σ1, Y1) and
C2 = (Λ2, R2, Σ2, Y2) that stably compute f1 and f2 respectively, and consider
an input x ∈ R≥0. Consider some state c reached by C2◦1. We want to show that
from c, we can reach an output stable configuration o s.t. o(Y2) = f2 ◦ f1(x).
From c, first produce the maximal amount of Y1 possible from the reactions
in C1. Since Y1 is the only species shared between Λ1 and Λ2 and Y1 is not a
reactant in any reaction of R1, reactions from R2 do not inhibit reactions from
R1. Thus, from c, there is a state c′ that is reachable where the reactions in
C1 have produced in total f1(x) of Y1. Again since Y1 is the only species shared
between C1 and C2, we can now consider c′ � Λ2, as C1 cannot produce any
more Y1. Observe that c′ � Λ2 must have also been reachable in C2 with an
input of f1(x). We know this is true because if we undid all of the performed
reactions in R2, we would end up with a state where the only compound present
in Λ2 with a positive concentration is f1(x) of Y1. Thus, by the definition of
stable computation, there is an output stable state o s.t. c′ � Λ2 → o and
o(Y2) = f2(f1(x)) = f2 ◦ f1(x). Since the reactions in C1 can no longer affect the
output of C2◦1, this is also an output stable state reachable in C2◦1. Thus, C2◦1
stably computes f2 ◦ f1(x). ut

Lemma 3. If a CRC C stably computes f and is composable, then we can re-
move all reactions where the output species appears as a reactant, and the re-
sulting output oblivious CRC will still stably compute f .

Proof. Assume that C1 is a composable CRC stably computing f with the output
species Y1. Suppose we compose it with C2, which contains a single reaction Y1 →
Y2 with Y2 as the output species of C2. Since C2 stably computes the identity
function, the resulting CRN C2◦1 must stably compute f . By the definition of
stable computation, from any reachable state c in C2◦1, we know that there is an
output stable state o such that c→ o and o(Y2) = f(x). Thus we can consider
any state c′ reachable by running the reactions in C1 that don’t use Y1 as a
reactant until no series of those reactions can further increase the concentration
of Y1. From c′, run the reaction in C2 to convert all Y1 into Y2 to reach the state
c. Since we have produced a maximal amount of Y1 possible in C1 without using
the reactions that involve Y1 as a reactant, there are no more reactions that can
run to produce Y1. Since the reactions output molecule Y1 cannot occur (since
it has a concentration of zero), we know that c must be an output stable state.
Thus we know that c(Y2) = f(x). This means that any trajectory of C1 that
produces a maximal amount of Y1 without using reactions that involve Y1 as a
reactant must produce an amount of Y1 equal to f(x). Therefore removing all
such reactions from C1 gives us a CRN C′1 that also stably computes f . ut
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To allow composition of multiple downstream CRCs, we can use the reaction
Y → Y1 + . . .+Yn to generate n “copies” of the output species Y , such that each
downstream module uses a different copy as input. Additionally, if the down-
stream module is output oblivious, then the composition is also output oblivious
and thus the composition is composable. These observations allow complex com-
positions of modules, and will be used in our constructions in Section 3.2.

3 Functions Computable by Composable CRNs

Here we give a complete characterization of the functions computable by com-
posable CRNs. First, we define exactly our notions of superadditive, positive-
continuous, and piecewise rational linear.

Definition 6. A function f : Rn → Rl is superadditive iff ∀a, b ∈ Rn, f(a) +
f(b) ≤ f(a + b).

Note that superadditivity implies monotonicity in our case, since the func-
tions computed must be nonnegative. As an example, we show that the max
function is not superadditive:

Lemma 4. The function max(x1, x2) is not superadditive.

Proof. Pick any x1, x2 > 0. Observe that max(x1, 0)+max(0, x2) = x1 +x2. But
since x1 and x2 are both positive, we know that x1 + x2 > max(x1, x2). Thus
max is not superadditive and by Lemma 6 there is no composable CRN which
stably computes max. ut

Definition 7. A function f : Rn≥0 → Rl is positive-continuous if for all U ⊆ [n],
f is continuous on the domain DU = { x ∈ Rn≥0 | (∀i ∈ [n]), x(i) > 0 ⇐⇒
i ∈ U}. I.e., f is continuous on any subset D ⊂ Rn≥0 that does not have any
coordinate i ∈ [n] that takes both zero and positive values in D.

Next we give our definition of piecewise rational linear. One may (and typi-
cally does) consider a restriction on the domains selected for the pieces, however
this restriction is unneccesary in this work, particularly because the additional
constraint of positive-continuity gives enough restriction.

Definition 8. A function f : Rn → R is rational linear if there exists a1, . . . , an ∈
Q such that f(x) =

∑n
i=1 aix(i). A function f : Rn → R is piecewise rational lin-

ear if there is a finite set of partial rational linear functions f1, . . . , fp : Rn → R
with

⋃p
j=1 dom fj = Rn, such that for all j ∈ [p] and all x ∈ dom fj, f(x) =

fj(x). We call f1, . . . , fp the components of f .

The following is an example of a superadditive, positive-continuous, piecewise
rational linear function:

f(x) =

{
x1 + x2 x3 > 0

min(x1, x2) x3 = 0
(1)
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The function is superadditive since for all input vectors a = (a1, a2, a3),
b = (b1, b2, b3), there are three cases: (1) a3 = b3 = 0, in which case both
input vectors compute min which is a superadditive function; (2) a3, b3 6= 0,
in which case both input vectors compute x1 + x2, which is a superadditive
function; (3) without loss of generality, a3 = 0 and b3 6= 0, in which case
f(a) + f(b) = min(a1, a2) + b1 + b2 ≤ a1 + a2 + b1 + b2 = f(a + b). The
function is positive-continuous, since the only points of discontinuity are when
x3 changes from zero to positive. The function is piecewise rational linear, since
min is piecewise rational linear.

Theorem 1. A function f : Rn≥0 → R≥0 is computable by a composable CRC if
and only if it is superadditive positive-continuous piecewise rational linear.

We prove each direction of the theorem independently in Sections 3.1 and 3.2.

3.1 Computable Functions are Superadditive Positive-Continuous
Piecewise Rational Linear

Here, we prove that a stably computable function must be superadditive positive-
continuous piecewise rational linear. The constraints of positive-continuity and
piecewise rational linearity stem from previous work:

Lemma 5 (Proven in [4]). If a function f : Rn≥0 → R≥0 is stably computable
by a CRC, then f is positive-continuous piecewise rational linear.

In addition to the constraints in the above lemma, we show in Lemma 6 that
a function must be superadditive if it is stably computed by a CRC. To prove
this, we first note a useful property of reachability in CRNs.

Claim. Given states a, b, c, if a→ b then a + c→ b + c.

This claim comes from the fact that adding species cannot prevent reactions
from occurring. Thus, we can consider the series of reactions where c doesn’t
react to reach the state b + c from the state a + c. We now utilize this claim to
prove that composably computable functions must be superadditive.

Lemma 6. If a function f : Rn≥0 → R≥0 is stably computable by a composable
CRC, then f is superadditive.

Proof. Assume C stably computes f . By definition of C stably computing f ,
∀ initial states x1,x2, ∃ o1,o2 such that x1 → o1 with o1(Y ) = f(x1) and
x2 → o2 with o2(Y ) = f(x2). Consider C on input x1 + x2. By the claim,
x1 + x2 → o1 + x2, and again by the claim, o1 + x2 → o1 + o2. Looking at
the concentration of output species Y , we have (o1 + o2)(Y ) = f(x1) + f(x2).
Since C stably computes f , there exists an output stable state o′ reachable from
initial state x1 +x2 and reachable from state o1 +o2, with o′(Y ) = f(x1 +x2).
Since C is composable, species Y does not appear as a reactant and thus its
concentration in any state reachable from state o1 + o2 cannot be reduced from
f(x1) + f(x2), implying o′(Y ) = f(x1 +x2) ≥ f(x1) + f(x2). This holds for all
input states x1, x2, and thus f is superadditive. ut
Corollary 1. No composable CRC computes f(x1, x2) = max(x1, x2).
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3.2 Superadditive Positive-Continuous Piecewise Rational Linear
Functions are Computable

It was shown in [9] that every piecewise linear function can be written as a
max of mins of linear functions. This fact was exploited in [4] to construct a
CRN that dual-rail computed continuous piecewise rational linear functions.
To directly compute a positive-continuous piecewise rational linear function,
dual-rail networks were used to compute the function on each domain, take the
appropriate max of mins, and then the reaction Y + + Y − → ∅ was used to
convert the dual-rail output into a direct output where the output species is
Y +. However, this technique is not usable in our case: by Corollary 1, we cannot
compute the max function, and the technique of converting dual-rail output to a
direct output is not output oblivious. In fact, computing f(Y +, Y −) = Y +−Y −
is not superadditive, and so by Lemma 6, there is no composable CRC which
computes this conversion.

Since our functions are positive-continuous, we first consider domains where
the function is continuous, and show that it can be computed by composing ra-
tional linear functions with min. Since rational linear functions and min can be
computed without using the output species as a reactant, we achieve composabil-
ity. We then extend this argument to handle discontinuities between domains.

Definition 9. An open ray ` in Rn from the origin through a point x is the set
` = {y ∈ Rn | y = t · x, t ∈ R>0}. Note that t is strictly positive, so the origin
is not contained in `.

Definition 10. We call a subset D ⊆ Rn a cone if for all x ∈ Rn, we know
that x ∈ D implies the open ray from the origin through x is contained in D.

Lemma 7. Suppose we are given a continuous piecewise rational linear function
f : Rn>0 → R≥0. Then we can choose domains for f which are cones which
contain an open ball of non-zero radius.

Intuitively, we can consider any open ray from the origin and look at the
domains for f along this ray. If the ray traveled through different domains,
then there must be boundary points where the function switches domains. But
we know that f is continuous, so the domains must agree on their boundaries.
Since there is only one line that passes through the origin and any given point,
the domains must share the same linear function to be continuous. Thus we can
place the ray into one domain corresponding to its linear function. Applying this
argument to all rays gives these domains as cones. This argument is formalized
in the below proof.

Proof. Since f is piecewise rational linear, we can pick a finite set of domains
D = {Di}Ni=1 for f , such that f |Di

= gi|Di
, where gi is a rational linear function.

Fix a domain Dk, and consider any point x ∈ Dk. Since the open ray `x from
the origin passing through x is contained in Rn>0, it is covered by the domains in
D. If we write any point y ∈ `x in the form t ·x, then, for each i, the restriction
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of gi to Di ∩ `x is of the form gi(t ·x) = αit for some αi ∈ R. Since x ∈ Dk ∩ `x,
we know that f(1 · x) = αk · 1 = αk

Now suppose that for some s ∈ R>0 we know that f(s · x) 6= αks. First con-
sider the case where s > 1. Then define the set A = {t ∈ [1, s] | f(t · x) = αkt}
and define the set B = {t ∈ [1, s] | f(t · x) 6= αkt}. We know that A is non-empty
since 1 ∈ A, so supA exists - call it t′. From the standard properties of the supre-
mum, we know that there exists a sequence of points {tj}∞j=1 such that tj ∈ A
for all j and limj→∞ tj = t′. As a result, from the continuity of f , we see that:

f(t′ · x) = lim
j→∞

f(tj · x) = lim
j→∞

αktj = αkt
′

So t′ ∈ A. However, by assumption, s ∈ B, so that t′ < s. Since t′ is an
upper bound on A, it must then be the case that (t′, s] ⊆ B, so that there exists
a sequence of points {sj}∞j=1 such that sj ∈ B for all j and limj→∞ sj = t′.
Since there are only finitely many domains in D, but infinitely many sj , by
the pigeonhole principle infinitely many of the sj must be contained in a single
domain Dk′ . Now write the subsequence of points contained in Dk′ as {sj′}∞j′=1.

We still know that limj′→∞ sj′ = t′, so by the continuity of f and the fact that
sj′ ∈ Dk′ , we see that:

αkt
′ = f(t′ · x) = lim

j′→∞
f(sj′ · x) = lim

j′→∞
αk′sj′ = αk′t

′

Since t′ > 0, this implies that αk′ = αk, so that f(sj′ · x) = αksj′ . However,
this contradicts the fact that we were able to choose sj′ ∈ B. As a result, our
assumption, that there is some s > 1 such that f(s · x) 6= αks, must be false. A
similar argument, using the infimum instead of the supremum, shows that there
can be no s < 1 such that f(s · x) 6= αks. As a result, for every point t ∈ `x,
we know f(t ·x) = αkt. In other words, f |`x = gk|`x , so we can replace Dk with
Dk ∪ `x without issue. Doing this for every x ∈ Dk, we can replace Dk with a
cone. By enlarging every domain in D in this way, we can choose domains for f
which are cones.

Since f is continuous, we can replace each Di ∈ D by its closure, which is
again a cone. Suppose that for any Di ∈ D, there is a point x ∈ Di is not in the
interior of Di. Then x is in the closure of the complement of Di, so there exists a
sequence {xk}∞k=1 of points in the complement of Di such that limk→∞ xk = x.
Since the complement of Di is covered by the Dj ∈ D, where j 6= i, we know
that each xk lies in one of the Dj . Since there are only finitely many Dj but
infinitely many xk, we know that infinitely many xk must lie in at least one of
the Dj . As a result, x is in the closure of this Dj , and since Dj is closed, we see
that x ∈ Dj . Because of this, if Di has no interior points, then it is completely
contained in the other Dj , so we can remove it from the set of domains. After
doing this for every Di which contains no interior points, we can ensure that the
domains we have chosen for f all contain an open ball of non-zero radius. ut
Lemma 8. Any superadditive continuous piecewise rational linear function f :
Rn>0 → R≥0 can be written as the minimum of a finite number of rational linear
functions gi.
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Proof. Since f is a continuous piecewise rational linear function, by Lemma 7,
we can choose domains {Di}Ni=1 for f which are cones and contain an open ball
of non-zero radius, such that f |Di = gi|Di , where gi is a rational linear function.
Now pick any x ∈ Rn>0 and any gj . Then because Dj is a cone containing an
open ball of finite radius, it contains open balls with arbitrarily large radii. In
particular, it contains a ball with radius greater than |x|, so there exist points
y, z ∈ Dj such that y + x = z. By the superadditivity of f , the linearity of gj ,
and the fact that y, z ∈ Dj , we see:

gj(y) + f(x) = f(y) + f(x) ≤ f(z) = gj(x + y) = gj(y) + gj(x)

So that f(x) ≤ gj(x). Since this is true for all gj , and since we know that
f(x) = gi(x) for some i, we see that f(x) = mini gi(x), as desired. ut

Lemma 8 is particularly useful for us since, as seen in the introduction, CRCs
computing min are easy to construct, and rational linear functions are relatively
straightforward as well. The next lemma gives details on constructing a CRC to
compute f by piecing together CRCs which compute the components (rational
linear functions) of f and then computing the min across their outputs. However,
since Lemma 8 as given applies to continuous functions with domain Rn>0, so does
this lemma; we handle the domain Rn≥0 later on.

Lemma 9. We can construct a composable CRC that stably computes any su-
peradditive continuous piecewise rational linear function f : Rn>0 → R≥0.

Proof. By Lemma 8, we know that f can be written as the minimum of a finite
number of rational linear functions gi. Observe that a general rational linear
function g(x) = a1x1 + a2x2 + . . . anxn is stably computed by the reactions

∀i, kiXi → aikiY

where ki is a positive integer such that kiai is also a positive integer. Since f is
the minimum of a number of gi’s, we can make a chemical reaction network where
we compute each gi using a copy of the input species, calling the output Yi (the
reaction X1 → X1

1 + . . .+X5
1 produces five species with concentrations equal to

X1’s initial concentration, effectively copying the input species so that the input
may be a reactant in several modules without those modules competing). Next,
we use the chemical reaction

Y1 + . . .+ Yn → Y

to get the minimum of the Yi’s. Since each Yi obtains the count of the corre-
sponding gi, this CRN will produce the minimum of the gi’s quantity of Y’s.
Thus, according to Lemma 8, the described CRC stably computes f . Note that
each sub-CRC described in this construction is output oblivious, and thus com-
posable, so the composition of these modules maintains correctness. ut
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The above construction only handles the domain Rn>0, where we know our
functions are continuous by positive-continuity. However, when extended to the
domain Rn≥0, positive-continuity of our functions allows discontinuity where in-
puts change from zero to positive. The challenge, then, is to compute the super-
additive continuous piecewise rational linear function corresponding to which
inputs are nonzero.

Surprisingly, Lemma 11 below shows that we can express a superadditive
positive-continuous piecewise rational linear function as a min of superadditive
continuous piecewise rational linear functions. The first step towards this ex-
pression is to see that, given two subspaces of inputs wherein the species present
in one subspace A are a superset of the species present in a subspace B, the
function as defined on the subspace A must be greater than the function as
defined on the subspace B; otherwise, the function would disobey monotonicity
and thus superadditivity, as proven below:

Lemma 10. Consider any superadditive positive-continuous piecewise rational
linear function f : Rn≥0 → R≥0. Write N = [n], and for each S ⊆ N , let gS(x)
be the superadditive continuous piecewise rational linear function that is equal to
f on DS. If S, T ⊆ N and S ⊆ T , then for all x ∈ DS we know gS(x) ≤ gT (x).

Proof. Write ei for the vector of length 1 pointing in the positive direction of
the ith coordinate axis. Define the vector v =

∑
i∈T\S ei. Then for any x ∈ DS

and any ε ∈ R>0, we know that x + εv ∈ DT . Since f is superadditive, it is
also monotonic. Suppose that gT (x) < gS(x). Because gT is continuous, taking
δ = gS(x)− gT (x) > 0, there is some small enough ε > 0 such that

f(x + εv) = gT (x + εv) < gT (x) + δ = gS(x) = f(x)

contradicting the monotonicity of f . Our assumption must be false, so gS(x) ≤
gT (x). ut

Next we define a predicate for each subset of inputs which is true if all inputs
in that subset are nonzero. Intuitively, in the CRC construction to follow, this
predicate is used by the CRC to determine which inputs are present:

Definition 11. For any set S ⊆ [n], define the S-predicate PS : Rn≥0 → {0, 1}
to be the function given by:

PS(x) =

{
1 x(i) > 0 ∀i ∈ S
0 otherwise

A näıve approach might be the following: for each subdomain DS , the func-
tion is continuous, so compute it by CRC according to Lemma 9, producing an
output YS . Then compute the PS predicate by CRC, and if the predicate is true
(e.g., a species representing PS has nonzero concentration), use that species to
catalyze a reaction which changes the YS to Y , the final output of the system.
However, note that if T is a subset of S, PS and and PT are both true, so this
technique will overproduce Y .
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The following technique solves this issue by identifying a min which can be
taken over the intermediate outputs YS . In particular, for each S, we compute
gS(x) +

∑
K 6⊆S PK(x)gK(x), and then take the min of these terms. When S

corresponds to the set of input species with initially nonzero concentrations,
then the summation term in this expression is 0, since PK(x) = 0 for all K 6⊆ S.
When S does not correspond to the set of input species with initially nonzero
concentration, then either (1) it is a superset of the correct set I, in which
case Lemma 10 says that gS(x) ≥ gI(x) (thus the min of these is gI(x)) or (2)
the summation term added to gS(x) contains at least gI(x), and since gS(x) +
gI(x) ≥ gI(x), the min of these is gI(x). Thus taking the min for all S of
gS(x)+

∑
K 6⊆S PK(x)gK(x) is exactly gI(x), where I is the correct set of initially

present input species.

Lemma 11. Consider any superadditive positive-continuous piecewise rational
linear function f : Rn≥0 → R≥0. Write N = [n], and for each S ⊆ N , let gS(x)
be the superadditive continuous piecewise rational linear function that is equal to
f on DS. Then, f(x) = min

S⊆N
[gS(x) +

∑
K 6⊆S

PK(x)gK(x)].

Proof. For S ⊆ N , let hS : Rn≥0 → R≥0 be given by

hS(x) = gS(x) +
∑
K 6⊆S

PK(x)gK(x)

We want to show that f(x) = minS⊆N hS(x). To do this, fix x ∈ Rn≥0 and
define the set I = {i ∈ N | x(i) > 0}. First, let’s show that hI(x) = f(x). By the
definition of I, for all K 6⊆ I, we know PK(x) = 0. Thus,

∑
K 6⊆I PK(x)gK(x) =

0, so hI(x) = gI(x) = f(x). Now we must show that hS(x) ≥ f(x) for all
S ⊆ N . There are two cases to consider:

Case 1: S 6⊇ I
In this case,

hS(x) = gS(x) +
∑
K 6⊆S

PK(x)gK(x) ≥ gS(x) + PI(x)gI(x) ≥ PI(x)gI(x)

By the definition of I, we know PI(x) = 1, so PI(x)gI(x) = gI(x) = f(x).
Thus we get that hS(x) ≥ f(x).

Case 2: S ⊇ I
By Lemma 10, gS(x) ≥ gI(x). As a result,

hS(x) = gS(x) +
∑
K 6⊆S

PK(x)gK(x) ≥ gS(x) ≥ gI(x) = f(x)

Since for all x ∈ Rn≥0, we know hS(x) ≥ f(x) for all S ⊆ N and hI(x) = f(x)
for some I ⊆ N , it follows that f(x) = minS⊆N hS(x). ut
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Lemma 12 takes the above Lemma 11 along with the construction which
stably computes on strictly continuous domains from Lemma 9 to construct a
CRC which stably computes on positive-continuous domains.

Lemma 12. Given any superadditive positive-continuous piecewise rational lin-
ear function f : Rn≥0 → R≥0, there exists a composable CRC which stably com-
putes f .

Proof. The proof follows by identifying that the function can be expressed as
a composition of functions (via Lemma 11) which are computable by output
oblivious CRCs and are thus composable by Lemma 2. By Lemma 11, we know
that f(x) = min

S⊆N
[gS(x)+

∑
K 6⊆S

PK(x)gK(x)]. The first subroutine copies the input

species, e.g. X1 → X1
1 + . . .+X5

1 , in order for each sub-CRC to not compete for
input species. This copying is output oblivious. Then for any Q ⊆ [n], PQ(x) is
computed using one set of copies via the reaction:∑

i∈Q
Xi → PQ

noting that although the predicate PQ(x) is defined to be 0 or 1, it is sufficient
in this construction for the concentration of the species representing PQ(x) to
be zero or nonzero. This CRC is output oblivious.

We can also compute each gQ(x) (via Lemma 9) using copies of the input
molecules. This construction is output oblivious. To compute PQ(x)gQ(x) given
the concentration species PQ as nonzero iff PQ(x) = 1 as shown above, we simply
compute the following (assuming YQ is the output of the module computing
gQ(x)):

f(PQ, YQ) =

{
YQ PQ 6= 0

0 PQ = 0

which is computed by this output oblivious CRC:

YQ + PQ → Y + PQ

The CRC computing min is output oblivious, as seen in the introduction. The
CRC computing the sum of its inputs is output oblivious (e.g., X1 → Y,X2 →
Y computes X1 + X2). Since each CRC shown is output oblivious and thus
composable, we can compose the modules described to construct a CRC stably
computing min

S⊆N
[gS(x)+

∑
K 6⊆S

PK(x)gK(x)], which is equal to f(x) by Lemma 11.

ut

Corollary 2. Given any superadditive positive-continuous piecewise rational lin-
ear function f : Rn≥0 → R≥0, there exists a composable CRC with reactions with
at most two reactants and at most two products which stably computes f .

To deduce this corollary, note that the reactions with more than two reactants
and/or products are used to compute the following functions: computation of
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a rational linear function, copying inputs, min, and predicate computation. We
can decompose such reactions into a set of bimolecular reactions. For example,
a reaction X1 + . . .+Xn → Y1 + . . .+ Yn can be decomposed into the reactions
X1 + X2 → X12, X12 + X3 → X123, . . . , X123...n−1 + Xn → Y12...n−1 + Yn,
Y12...n−1 → Y12...n−2 +Yn−1, . . . , Y12 → Y1 +Y2. We can verify that each affected
module stably computes correctly with these expanded systems of reactions, and
remains composable.

4 Example

In this section, we demonstrate the construction presented in the previous section
through an example. Consider the function shown in Equation 1 in Section 3.
As shown in that section, the function is superadditive, positive-continuous, and
piecewise rational linear. Thus, we can apply our construction to generate a
composable CRN stably computing this function. Note that while this CRN is
generated from our methodology, we have removed irrelevant species and reac-
tions.

Making copies of input:

X1 → X ′′1 +X ′′′1

X2 → X ′′2 +X ′′′2

X3 → X ′3

Using X ′3 to make P3, which catalyzes
reactions for the domain X3 > 0:

X ′3 → P{3}

Computing the sum in Y{3}:

X ′′1 → Y{3}

X ′′2 → Y{3}

Computing the min in Y∅:

X ′′′1 +X ′′′2 → Y∅

Making a copy of Y{3} for use in in-
creasing Y ′∅:

Y{3} → Y ′{3} + Y{3},∅

Increase Y ′∅ so that it won’t be the min
when x3 is present:

Y{3},∅ + P{3} → Y ′∅ + P{3}

Rename Y∅ to Y ′∅ so that it will be
summed with the term created by the
previous reaction:

Y∅ → Y ′∅

Y ′∅ + Y ′{3} → Y

5 Future Work

Instead of continuous concentrations of species, one may consider discrete counts.
This changes which functions are stably computed by CRNs. Without our com-
posability constraint, [3] shows in the discrete model that a function f : Nn → N
is stably computable by a direct CRN if and only if it is semilinear; i.e., its
graph {(x, y) ∈ Nn × N | f(x) = y} is a semilinear subset of Nn × N. The proof
that composably computable functions must be superadditive (Lemma 6) holds
for the discrete model as well. So, it is now known that functions computable
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in the discrete model by a direct, composable CRN must be superadditive and
semilinear. Surprisingly, however, there exists a function which is superadditive
and semilinear which is not computable by such CRNs (the proof is non-trivial
and is omitted):

f(x1, x2) =

{
x1 − 1 x1 > x2

x1 x1 ≤ x2.

Therefore the exact characterization of the class of computable functions for the
discrete, composable case remains an open question.

In our model of a chemical reaction computer, we restrict the concentrations
of non-input species in the initial state to be zero. One may consider some
(constant) initial concentration of non-input species, called initial context, and
how that may affect computation. In the non-composable case, this allows the
components of the piecewise functions to be rational affine functions of the form
f(x) =

∑n
i=1 aix(i) + b, where the additional b concentration of output species

is produced from the initial concentration of non-output species. However, in
the composable case, a function as simple as f(x) = x − 1 is not computable,
even though it is superadditive and affine. Additionally, since f(x) = x+1 is not
superadditive, it also cannot be computed. Uncovering what, if any, additional
power is gained from initial context in the composable case remains open.

Our negative and positive results are proven with respect to stable compu-
tation, which formalizes our intuitive notion of rate-independent computation.
It is possible to strengthen our positive results to further show that our CRNs
converge (as time t→∞) to the correct output from any reachable state under
mass-action kinetics (proof omitted). It is interesting to characterize the exact
class of rate laws that guarantee similar convergence.

Apart from the dual-rail convention discussed in the introduction, other in-
put/output conventions for computation by CRNs have been studied. For exam-
ple, [10] considers fractional encoding in the context of rate-dependent compu-
tation. As shown by dual-rail, different input and output conventions can affect
the class of functions stably computable by CRNs. While using any superaddi-
tive positive continuous piecewise rational linear output convention gives us no
extra computational power—since the construction in this paper shows how to
compute such an output convention directly—it is unclear how these conventions
change the power of rate-independent CRNs in general.

Finally we can ask what insights the study of composition of rate-independent
modules gives for the more general case of rate-dependent computation. Is there a
similar tradeoff between ease of composition and expressiveness for other classes
of CRNs?
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