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Abstract

While the range of boolean behaviors realized by transcriptional networks is well understood, the range
of dynamic behaviors that can be realized by transcriptional networks operating in the graded regime
is not yet known. We show that networks of appropriately connected and tuned repressor transcription
factors can approximate the large class of mass-action dynamical systems. This completeness result gen-
eralizes the logical completeness of repressors in the saturated regime for arbitrary boolean functions.
Our argument relies on showing how combinatorial control over the rate of transcription can mimic
combinatorial control over degradation that is outside of the transcriptional scope. Our result yields
a systematic method to construct novel analog dynamics using synthetic transcriptional networks, and
contributes to the understanding of the range of system behaviors generated by transcriptional regulation.
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Introduction

Synthetic biology aims to apply engineering principles to design and control the behavior of living cells.
The target applications are inaccessible to traditional engineering approaches and include re-programming
cells to target pathogens, detoxify the environment, and produce biofuels. All these applications require
synthetic regulatory networks to manage how cells navigate their environment and regulate their internal
state. The principles of analog computation can provide crucial insights into building complex information
processing functions in living cells. Synthetic circuits that use the analog computation framework can
require significantly fewer components and use less energy than digital alternatives, and are particularly
suited for applications that do not rely on high precision computation [1,2]. Indeed, operating under the
same constraints, there are many examples of analog behavior in natural biological regulatory networks
[3, 4].

An important conceptual step in engineering computational systems has been the development of the
notion of completeness. Informally, a component type is complete for a class of systems if any instance of
that class can be constructed by combining and recombining this component type in various ways. In the
boolean context, completeness provides a way to systematically assemble a set of simple components into
circuits to compute complex logic functions. As a notable example, Claude Shannon showed how boolean
algebra can systematize combining switches and relays — a connection that revolutionized our ability
to create electronic circuits at the time [5]. The completeness of minimal functional elements like NOR
gates was crucial to the development of computers (e.g. the computational core of the Apollo navigation
computer constituted entirely of NOR gates) [6]. In synthetic biology, transcription factors that repress
specific sets of genes (repressors) can similarly constitute a NOR gate for biological computation [7].
Together, the transcriptional implementation of the NOR operation and the ability to compose such
systems enables the construction of arbitrary logic functions. As in the boolean case, history is not
without precedent for theories of analog completeness. For example, Shannon again provides inspiration:
his work on the differential analyzer put this analog computer on solid mathematical grounds [8]. More
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recent work explored a systematic way to implement dynamical systems in analog electronics [9].
Motivated by the broad applications of systematic design using complete basis elements in the Boolean

context, we investigate a complete basis for biological analog dynamics. We develop a method showing
how a simple form of regulation – repression of a promoter by a transcription factor – can be complete
for a well-studied and computationally powerful class of mass-action dynamical systems.

Transcriptional networks can naturally exhibit both digital and analog regimes. Depending on pa-
rameters such as the Hill-coefficient and affinity, the transcription factor binding site in the promoter can
be saturated (always unoccupied or occupied) or unsaturated. Whereas the transition between the two
saturated regimes represents a boolean state (ON or OFF), the unsaturated regime exhibits a continuous
dependence of the transcriptional activity on the concentration of the transcription factor. Our focus on
transcriptional regulation is also motivated by its programmable and modular characteristics. Diverse
libraries of mined transcription factors and new technologies such as CRISPRi have recently emerged
that will significantly advance the rational design of orthogonal transcriptional circuits [10, 11, 11, 12].
We rely on repressors since activators are functionally redundant: two repressors composed serially can
mimic activation. Further, repressors are mechanistically simple: these proteins function by sterically
occluding RNA polymerase thus facilitating rigorous mathematical modeling [13,14].

We show a novel route to a transcriptional implementation of mass-action behaviors, which encompass
a diverse repertoire of analog behaviors including temporal patterning, multi-stability and memory, logic,
signal processing, control systems and distributed algorithms [15–19]. The completeness of unsaturated
repressor networks for mass-action kinetics also implies that repressor networks can approximate the
kinetic behavior of any other chemical system albeit at a different time scale — and in that sense
they are “maximally powerful”. We target mass-action kinetics rather than the more general class of
polynomial ODEs because of mathematical convenience, and not because of the ostensible concurrence
between the chemical nature of transcription and the central role of mass-action in chemical kinetics. In
particular, it turns out that approximating complex mass-action degradation terms is easier than arbitrary
negative monomials. An important limitation of our comprehensive approach is that implementing some
systems would require precise tuning of certain parameters, which may be difficult to achieve in the
messy environment of the cell. The precise enumeration of systems “robust” to imperfect tuning of the
parameters in our model remains open.

Related work

Biological networks for implementing desired analog behaviors have been designed using two general types
of approaches: enumeration strategies and dynamical systems theory. Systematic enumeration and in
silico evolution approaches have been used to search exhaustively for circuit topologies that implement
specific behaviors such as adaptive dynamics and programmable spatial localization [20–24]. However, in
systems with greater than three or four nodes, the computational power required to search exhaustively
for the function of interest becomes prohibitive. Alternatively, rational approaches based on dynamical
systems theory have been used to construct specific classes of behaviors such as bistability and limit-
cycle oscillations. For example, nullcline analysis is a well-established method for constructing a bistable
switch from first principles [25]. However, what constitutes the set of “functionally complete” behaviors
has not yet been formulated for transcriptional regulation. A unified framework for synthesizing analog
behaviors could significantly expand the range of achievable functions and provide important insights
into the limitations of synthetic biology.

A number of papers have developed frameworks for doing analog computation with transcriptional
machinery. Perkins and Cory proposed a systematic framework for building arithmetic functions with
transcriptional networks [26]. However, they did not apply their approach to dynamical systems. Fur-
ther, their method requires more complex basis elements including protein-level interactions between
transcription factors. Recent experimental work showed synthetic analog computation in living cells [2].
While their use of the log-linear regime simplifies some computations (eg multiplication) and increases
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robustness to noise, it is not clear how to combine such computations into larger dynamical systems with
feedback.

Models

Cells use complex regulatory networks that consist of many levels of regulation, using distinct physical
mechanisms to perform computation. Considering different physical mechanisms in isolation could clarify
the contribution of the different layers of regulation to the system as a whole. Here we focus on a single
layer of regulation by transcriptional repression. Even at the transcriptional level, Nature provides
many knobs to tune, including the transcription and translation rates, cooperativity, binding affinity
of the transcription factor to its binding site and degradation rate of the transcription factor. Among
these parameters, transcription rates can be most easily modified by the choice of well-characterized
promoters [27]. Indeed, our completeness result relies on setting the transcription rates of the genes for
the various repressors in the network, without needing to vary the remaining parameters. Such restrictions
provide important insights into which parameters are essential for generating a large diversity of behaviors
and constitutes an important step towards making the model “implementable.”

For simplicity, in our model we lump transcriptional and translational dynamics into a single pro-
duction law. This assumption is justified in the regime in which transcription is the rate limiting step
(e.g. due to high levels of transcriptional repression or low basal levels of transcription). Furthermore,
there are novel and versatile technologies for implementing RNA-based repressors that do not require
translation for regulation [10,28]. Finally, we focus on a deterministic model of transcriptional networks
as opposed to a stochastic framework, which is valid in high concentration regimes. However, a stochastic
implementation of a network demonstrates that stochastic effects do not significantly alter the designed
functionality of the transcriptional networks (see Discussion).

In our model, we assume that the probability that a recognition site for repressor X is unoccupied is
a Hill function

1

1 + (X/kX)nX
(1)

with parameters: order nX and binding constant kX . A promoter is active only if none of the repressor
sites are occupied. When a promoter p is active, expression occurs with some rate αp. (Recall that we do
not model separate RNA and protein level dynamics.) Each repressor undergoes a linear decay with rate
βX due to a combination of dilution (due to cell division) and degradation. The rate βX is independent of
the repressor concentrations in our network because we do not allow direct physical interactions between
repressors. The same repressor gene could be present in multiple copies, under the control of different
promoters. Adding up the contributions of multiple promoters for the same repressor, and subtracting a
linear degradation rate, yields the following dynamics of each repressor Xi:

Ẋi =
∑

p∈P(Xi)

αp ∏
j∈R(p)

1

1 + (Xj/kXj )nXj

− βiXi. (2)

where P(Xi) is the set of promoters for repressor Xi.
To convert to dimensionless form, we use xi = Xi/kXi

, ap = αpτ/kXi
(for p ∈ P(Xi)), bi = βiτ , where

τ sets the time scale. The dimensionless form then becomes as follows, which we term the Hill-function
model of unsaturated repressor networks:

ẋi =
∑

p∈P(Xi)

ap ∏
j∈R(p)

1

1 + x
nXj

j

− bixi. (3)
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Figure 1. Unsaturated regime of Hill-functions. When the concentration of a transcription factor X is
close to its half-max value (i.e. X ≈ k, the binding constant), we can approximate the probability that

its binding site remains unoccupied by 1
2 −

n(X−k)
4k , where n is the Hill-coefficient. We plot the

dimensionless quantity x = X/k on the abscissa.

Networks of repressors operate in the unsaturated regime when Xi is close to kXi
. In dimensionless

form the equivalent condition is that all xi remain close to 1. When xj is close to 1, then we can
approximate the Hill-function 1 by the linear function

1

2
+
nXj

4
(1− xj). (4)

(See Fig. 1). This yields the following approximation to the Hill-function model (eq 3), which we call
the component-wise linear model :

ẋi =
∑

p∈P(Xi)

ap ∏
r∈R(p)

(
1

2
+
nXj

4
(1− xj)

)− bixi. (5)

We will use the simpler component-wise linear model to facilitate analysis and enable systematic design.
Note that the component-wise linear model of a promoter with multiple repressors is overall non-linear
since the linear terms due to each repressor are multiplied. A larger linear unsaturated regime enables a
faithful generation of desired dynamics over a greater concentration range. In the Discussion, we describe
a few strategies for expanding the linear range in these genetic circuits (Fig. 5).

Deterministic ODE simulations were performed in Mathematica (Wolfram Research) and MATLAB
(Mathworks) and stochastic simulations were performed using StochKit2 [29].
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Results

Motivating Examples

To highlight the diversity of behavior of repressor networks operating in unsaturated regime, we start
with three examples. For each example, the component-wise linear model (eq. 5) provides crucial insights
into their behavior.

In control theory, a key task is to compute the difference between the output and the desired reference
(error signal). We show how an unsaturated repressor network can perform this function by computing
the difference of inputs x1 and x2 (Fig. 2). A challenge in our implementation is to use strictly positive
concentrations to represent both positive and negative values. Our solution is to shift the signals to
operate around 1 instead of 0. As a result, we compute the function f(x1, x2) = 1 + x1 − x2, where the
(positive or negative) difference of x1 and x2 is represented as the (positive or negative) deviation from
1. The component-wise linearization enables a simple interpretation of the subtraction function compu-
tation (Fig. 2d,e). Numerical simulation of the full unsaturated repressor network confirms subtraction
computation (Fig. 2b).
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Figure 2. Subtraction example: Computation of the function f(x1, x2) = 1 + x1 − x2. (a) Repressor
network topology and (c) the dimensionless Hill-function model (in the form of eq. 3). (b) Plot of the
equilibrium output y as a function of the difference x1 − x2 in the Hill-function model of panel (c).
Multiple colored lines correspond to difference values of x1. The dotted line shows the expected ideal
behavior. (d) Component-wise linear model (in the form of eq. 5).(e) Equilibrium solution of panel (d)
showing that the correct function is computed.

A key feature of biological sensory networks is adaptation – a persistent change in the input signal
results in a transient output response which then relaxes to its original level. Previous results have
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shown that an incoherent feedforward loop can perform adaptation [30]. Similarly, unsaturated repressors
composed in a feedforward loop can compute adaptation (Fig. 3). Although adaptation encompasses a
broad range of transient responses, the output of our network can be shown to approximate specifically
the differentiation function f(x) = dx/dt. Differentiation is also crucial for feedback control systems:
many control algorithms compute the derivative to determine the direction and magnitude of desired
actuation [31].
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Figure 3. Adaptation example: f(x) = 1 + dx/dt (a) Repressor network topology and (c) the
dimensionless Hill-function model (in the form of eq. 3). (b) Numerical simulation of the model in
panel (c) showing the response of y (bottom) to a step function input on x (top). (d) Component-wise
linear model (in the form of eq. 5). (e) If we let u = 2− x, then the ODEs for x and d can be
understood in terms of the linear approximation differentiator (eqs. 6–7). The linear amplifier y
multiplies and inverts the d which results in a (shifted) derivative.

Again, the component-wise linear model illuminates how our network achieves adaptation: at a con-
stant input value of x, the equilibrium of x is 2 − x, which results in equilibrium value d = 1, and thus
y = 1, independent of x. Further analysis of the linearization shows how the output y computes the
derivative of the input signal x. Setting u = 2−x, the ODE for x is ẋ = γ1(u−x). Note that the system

ẋ = γ1(u− x) (6)

w = γ1(u− x) (7)

is the classic linear approximation differentiator with input u and output w, and transfer function s
s/γ1+1 ,

where w ≈ du/dt in the limit of large γ1. (Intuitively, by eq. 6, x follows u with the fidelity determined
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by γ1. At the same time, since the right hand side of eq. 6 is the derivative of x and x ≈ u, we can infer
that w = γ1(u− x) ≈ du

dt .) Finally, returning to our original system, the ODE ḋ = γ2(1 + 1
2 (u− x)− d)

implies that d follows 1 + 1
2 (u − x) ≈ 1 + 1

2γ1
du
dt , which is a scaled and shifted version of the derivative

of u. As before, the upward shift is necessary since repressor concentrations cannot be negative. Finally,
y inverts d restoring the correct sign of the derivative with respect to x rather than u, and amplifies
the signal. The accuracy of the approximation will depend on the parameters γ1, γ2, γ3, and the time
scale over which the input changes. Matching the adaptation response, numerical simulation of the full
unsaturated repressor network confirms that the output signal responds only to changes in the input
signal, and relaxes to its original value on constant input (Fig. 3b).

Due to their complex non-equilibrium behavior and their utility as biological clocks, oscillators have
played a key role in the history of synthetic biology [32]. While a number of nonlinear oscillatory systems
have been constructed, the class of oscillators that exhibit neutral stability has received less attention.
Such oscillators do not approach a limit cycle, but rather maintain the initial oscillation amplitude over
time and therefore the system’s initial conditions can modulate amplitude and frequency. This unique
property of neutral cycle oscillators can be used as a form of analog memory, in contrast to multi-stable
systems which preserve one of a few states (digital memory).

One of the most well-studied neutral cycle oscillators is the Lotka-Volterra system (predator-prey)
which has a rich history in mathematical ecology. Recently, a synthetic microbial ecosystem was engi-
neered to exhibit this behavior at the community level [33]. Here we show that unsaturated repressor
networks can realize the Lotka-Volterra oscillator by a genetic circuit within a cell (Fig. 4). Again,
component-wise linearization reveals that our network approximates the desired behavior. In the lin-
earization, the pseudo-equilibrium values of x1 and x2 are 2 − x1 and 2 − x2 for large γ (Fig. 4d).
Plugging these into the ODEs for x1 and x2 and simplifying yields the Lotka-Volterra system (Fig. 4e).
Simulations of the repressor network confirm that we approximate the dynamics of the Lotka-Volterra
system and that the initial conditions govern the oscillation amplitude (Fig. 4b).

Repressor networks are complete for mass-action kinetics

The above examples motivate the question: How diverse is the set of behaviors of unsaturated repressor
networks? Is there a systematic way to construct unsaturated repressor networks to implement desired
functionalities?

In this section we provide a systematic method for constructing an unsaturated repressor network
given any mass-action system such that the unsaturated repressor network mimics the behavior of the
mass-action system (as long as the evolution of the mass-action systems stays close enough to xi ≈ 1).
Mass-action systems encompass a very broad class of behaviors including all of classical chemical kinet-
ics [16]. Given their ability to implement a wide variety of behaviors, and because they have already been
extensively studied, mass-action systems constitute a natural design target. Moreover, we will see that
the particular form of mass-action systems makes this class directly amenable to implementation with
unsaturated repressor networks, compared with, say, systems of arbitrary (autonomous) polynomial dif-
ferential equations. While there are systematic ways that mass-action systems can approximate arbitrary
polynomial differential equations [34,35], the resulting approximation occurs at a higher level.

We note that among the examples shown in the previous section, the subtraction example (Fig. 2)
and adaptation example (Fig. 3) are not directly approximating mass-action systems (i.e. systems shown
in parts (e) are not mass-action). It is still an open question to delineate the class of non-mass-action
systems implementable with unsaturated repressor networks in our manner.

We first clarify what we mean by mass-action dynamical systems, and then describe an example illus-
trating the basic challenges and the corresponding solutions that arise when attempting to approximate
such systems with repressor networks. Finally, we describe a general solution.
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Figure 4. Lotka-Volterra (aka Predator-Prey) oscillator example. (a) Repressor network topology and
(c) the dimensionless Hill-function model (in the form of eq. 3). (b) Numerical simulations of the ideal
mass action Lotka-Volterra system (dashed) and the Hill-function repressor network from panel (c)
(solid). Note that different initial conditions lead to oscillations of different amplitude. (d)
Component-wise linear model (in the form of eq. 5).(e) For large γ, we can assume pseudo-equilibrium
on x̄1 and x̄2, which yields the ideal Lotka-Volterra system. In simulations, the separation of time scales
γ = 100 parameter was used.

Mass-action dynamical systems

Any mass-action dynamical system over N variables x1, . . . , xN (dimensionless) can be described by the
following differential equations:

ẋi = pi(x1, . . . , xN )− di(x1, . . . , xN )xi (8)

where pi and di are polynomials with non-negative terms. Note that unlike the general class of au-
tonomous polynomial ODEs, mass-action systems are restricted in the following way: Every negative
term in the ODE for ẋi must contain xi as a factor. Mass-action systems naturally arise in chemical
kinetics where the rate of the reactions consuming a species depend on the amount of that species. Mass-
action systems are exactly the class of autonomous polynomial ODEs in which no variable xi can become
negative starting with arbitrary non-negative values of all variables. Since chemical concentrations are
non-negative, this property provides an a priori justification for the appropriateness of mass-action models
in chemistry, at least among the class of autonomous polynomial ODEs.

Example: Toward a systematic construction

While the examples in Section demonstrated some of the power of unsaturated repressor networks, they
did not elucidate a general design process. In this section we consider the challenges encountered when
trying to realize the mass-action Lotka-Volterra system (Fig. 4) as an unsaturated repressor network, and
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show the reasoning that leads to the system in Fig. 4c. In the next section this approach is generalized
to other mass-action systems.

Recall that the Lotka-Volterra oscillator is a mass-action system given by the following differential
equations (where we take all rate constants to be 1):

ẋ1 = x1 − x1x2 (9)

ẋ2 = x1x2 − x2 (10)

Our goal is to construct a system in the component-wise linear form shown in eq. (5) that approximates
the Lotka-Volterra system. We must also ensure that all variables (including new ones we will introduce)
remain close to 1 when the oscillator operates in the desired domain (x1, x2 close to 1). The resulting
system is then straightforward to implement using the Hill-function model of eq. (3), and thus can be
considered realizable with an unsaturated repressor network.

The first step is to implement activation with repressors: we need, for example, x2 to be positively
affected by x1. We can use a convenient property of order-2 Hill-functions that allows two repressors
(say xi and x̄i) wired serially to approximate linear activation (i.e. transcription rate proportional to xi).
Specifically, for each xi we introduce a variable x̄i with dynamics

˙̄xi = γ · (2− xi)− γx̄i. (11)

This equation is in the form of the component-wise linear model (5) with nXj = 2, ap = 2γ, bi = γ. For
large γ, x̄i converges to its pseudo-equilibrium value 2 − xi on a faster time-scale than the dynamics of
xi. Thus we can use (2 − x̄i) as a replacement for xi. Observe that if xi ≈ 1 then x̄i ≈ 1 as well, as
required for the component-wise linear model to faithfully approximate the Hill-function model.

For the Lotka-Volterra system, with these new variables we can rewrite the second equation (eq. (10))
as:

ẋ2 = (2− x̄1)(2− x̄2)− x2 (12)

which is now in the desired form (5), with nXj
= 2, ap = 4γ, bi = 1. In the limit of large γ, the pseudo-

equilibrium on the dynamics of x̄1 and x̄2 yields x̄1 = 2 − x1 and x̄2 = 2 − x2, and eq. (12) reduces to
ẋ2 = x1x2− x2 as desired. (Note that the (2− x) terms produced from the component-wise linearization
of order-2 Hill-functions are unique to satisfy two properties: Composition twice over yields the original
x (as shown in (11) and (12)), and (2− x) is close to 1 when x is close to 1 (allowing x̄i to be close to 1).
This motivates our use of order-2 Hill-functions.)

The second challenge is to approximate the non-linear negative term −x1x2 in eq. (9) of the Lotka-
Volterra system. We define complex degradation terms to be the negative terms in the ODE for variable
xi that are non-linear in xi (i.e. not of the form −c · xi for some constant c ≥ 0), and thus cannot be
accounted for by linear degradation. For example, in the Lotka-Volterra system the term −x1x2 of ẋ1 is
a complex degradation term. Complex degradation terms present a problem since our gene regulatory
network model allows only a linear decay. Nonetheless, complex degradation terms can be indirectly
accounted for in unsaturated repressor networks. Consider the following dynamics for xi, which are in
component-wise linear form:

ẋ1 = (2− x2)(2− x̄1)− x1 (13)

≈ (2− x2)x1 − x1 (14)

= 2x1 − x2x1 − x1 (15)

= x1 − x2x1 (16)

The approximation (14) follows by the pseudo-equilibrium of x̄1 as described above.
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Note that the complex negative term arises in (15) as a result of applying the distributive law.
Finally, note that to obtain (16) we cancel the positive term produced by the distributive law (2x1) with
the negative linear degradation x1 term. The distributive law followed by cancelation with the linear
degradation term can be universally applied to obtain arbitrary complex degradation terms in mass-action
ODEs (as shown in the next section).

The restriction to mass-action systems seems natural. Suppose we wanted to implement the non-
mass-action ODE ẋ1 = · · ·−x2x3 + . . . , where the complex degradation term does not contain x1. To get
the negative x2x3 term using the above technique would require using the distributive law on (2− x2)x3
or (2−x3)x2. But then, in addition to the desired negative x2x3 term, we would also get either a positive
2x3 or 2x2 term. If this extra term is not wanted, we cannot cancel it with the negative linear degradation
term x1.

General case: Design of unsaturated repressor networks for mass-action kinetics

In this section we show how given a mass-action system we can construct a component-wise linear mode
that approximates it. This implies that in the regime where the component-wise linear model is a good
approximation for the Hill-function repressor dynamics, the repressor network will approximate the target
mass-action system. As before, the suitable regime is a sufficiently small neighborhood around xi = 1 in
dimensionless quantities. We suppose the goal mass-action system (8) and the initial conditions are such
that ∀xi, 1 − δ ≤ xi ≤ 1 + δ for some constant δ < 1 (eg. δ = 0.1) at times of interest. We follow the
strategy generalized from the Lotka-Volterra example in the previous section.

We describe a “minimal” way that unsaturated repressor networks are complete. While having control
over all parameters of our model (eq. (3)) may enable easier construction of desired functions, we show
that control over only one type of parameter is sufficient. In particular, among the parameters of the
model (eq. (3)), we allow only specific control over production rate constant ap > 0, but fix all degradation
rate constants bi = b > 0. Further, we use a universal Hill-coefficient nXj = n = 2. Then the component-
wise linear model (eq. 5) simplifies to the following form, which we term the standard component-wise
linear model:

ẋi =
∑

p∈P(Xi)

ap
2

∏
j∈R(p)

(2− xj)− bxi. (17)

As before, the linear approximation holds when xi ≈ 1 using dimensionless quantities.
For polynomial p of positive monomials, letM(p) be the set of its monomials. For a monomial m, let

V(m) be the multiset of variables (ie to account for xn, x appears n times), and c(m) be the (positive)
multiplicative constant of the monomial.

Suppose we are given a target mass-action system described by eq. (8). We claim that for large γ,
the following system converges to it, where we let c(p) =

∑
m∈M(p) c(m) be the sum of the coefficients of

polynomial p:

ẋi = γ · (2− xi)− γxi (18)

ṙi =
∑

m∈M(di)

γc(m)

c(di)

∏
j∈V(m)

(2− xj)− γri (19)

ẋi =
∑

m∈M(pi)

c(m)
∏

j∈V(m)

(2− xj) + c(di)(2− ri)(2− xi) + (γ − 2c(di))(2− xi)− γxi (20)

The above system has the property that, for γ > 2c(di), it is of the form (17) and thus can be implemented
as a gene regulatory network.

The following convergence argument is informal; for a more formal treatment singular perturbation
theory may be used. First, we use a time separation argument with x̄i and ri as the fast variables, and xi
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as the slow variables. In the limit γ →∞, a pseudo-equilibrium is established for x̄i and ri as functions
of xi:

x̄i = 2− xi

ri =
∑

m∈M(di)

c(m)

c(di)

∏
j∈V(m)

(2− xj) =
1

c(di)

∑
m∈M(di)

c(m)
∏

j∈V(m)

xj

Plugging this into (20) yields:

ẋi =
∑

m∈M(pi)

c(m)
∏

j∈V(m)

xj + c(di)

2− 1

c(di)

∑
m∈M(di)

c(m)
∏

j∈V(m)

xj

xi + (γ − 2c(di))xi − γxi

=
∑

m∈M(pi)

c(m)
∏

j∈V(m)

xj −
∑

m∈M(di)

c(m)
∏

j∈V(m)

xjxi

= pi(x1, . . . , xN )− di(x1, . . . , xN )xi

This is exactly the form of the original mass-action system (8).
A few properties bear mentioning. If xi in equation 18 is 1 then the pseudo-equilibrium of x̄i is

x̄i = 1. Similarly, if all xj in equation 19 are 1, then the pseudo-equilibrium of ri is ri = 1, no matter
what the polynomial coefficients are. This means that x̄i and ri are in the linear regime (near 1) if the
variables they depend on are as well. Finally, if all the variables of the mass-action system (eq 8) remain
close to 1 then xi will remain near 1 in equation 20, satisfying the condition necessary for the standard
component-wise linear model to correspond to the Hill-function model (3).

Discussion

In this work, we provide a proof of principle that gene regulatory networks are a natural substrate for
analog computation. Thus engineering the key building blocks for our construction — a set of independent
repressors that exhibit a large linear regime of activity — could advance analog design in synthetic biology.

The proposed systematic construction has a few important limitations. The promoter production rates
have to be tuned carefully to ensure that the system operates in the unsaturated regime. Luckily, however,
there are ways to expand the linear regime. If the intermediate transcription factor binding states are
stable, a complex rational function is a more accurate representation of the rate of transcription. In this
case, the unsaturated regime can be expanded thus broadening the functional parameter regime (Fig.
5a). In addition, the size of the linear regime can increase with the number of non-specific transcription
factor binding sites as shown in Fig. 5b [2].

To achieve the full generality of mass-action kinetics requires the precise tuning of transcription rate
constants αp. In particular, the argument of section relies on the exact cancelation of certain terms
in the component-wise linearization. Nonetheless, the behavior of some systems is robust to imperfect
cancellation. For example, imperfect cancellation in the Lotka-Volterra system changes the rate constants
of the ideal system, while preserving the overall neutrally stable behavior. It remains to demarcate the
class of systems that can be implemented with unsaturated repressor in a manner that is robust to model
parameters. Our construction also relies on a time-scale separation approximation leading to necessarily
slow time scales of the dynamics of the system.

Since stochastic fluctuations in molecular concentrations are pervasive in the cell, parameter tuning
required by our model could be difficult to achieve due to this molecular noise. Nevertheless, stochas-
tic simulations of the unsaturated repressor network Lotka-Volterra system demonstrates that realistic
parameters ranges can generate neutral cycle oscillatory dynamics (Fig. 6). Matching the deterministic
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Figure 5. Expanding the unsaturated operating regime. (a) More complex rational functions can have
a larger linear unsaturated regime than Hill-functions. The gray box illustrates the region of good linear
approximation. We plot the dimensionless quantity x = X/k, where k is the binding constant k. (b)
Increasing the number of non-specific transcription factor binding sites expands the linear regime. Total
concentration of transcriptional activator is plotted as a function of the promoter activity (as described
in [36]). Parameters include Kn = 1 and Kp = 1.

model, this stochastic implementation behaves as a neutral cycle oscillator since variation in the initial
conditions changes the amplitude and frequency.

It is likely that there are many ways to implement mass-action systems with transcriptional networks.
For example, the same Lotka-Volterra oscillator can be constructed in a different way using a combination
of repressors and activators (Fig. 7). In contrast to unsaturated repressor networks, the repressors in
Fig. 7 operate in the saturated regime where promoter activity scales as the reciprocal of the repressor
concentration. A more complete theory would utilize both the saturated and unsaturated regimes of the
Hill function for analog computation. Further, as the first two examples in Section suggest, a certain class
of non-mass-action systems can be directly implemented by unsaturated repressor networks. However,
more work needs to be done to ascertain exactly the boundaries of this class as well as to elucidate the
distinguishing properties of the dynamical systems in it.

The power of post-transcriptional networks such as phosphorylation circuits has not yet been system-
atically explored for analog computation. Beyond the relatively faster timescale of post-transcriptional
networks, it is not clear whether transcriptional or post-transcriptional regulation is more suitable for
analog computation.

Our choice of the model is dictated in part by the desire to understand the computational power
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Figure 6. Stochastic simulations the predator prey unsaturated repressor network (equations in Fig.
4C) for two different initial conditions. Note that different initial conditions lead to oscillations of
different amplitudes matching the deterministic model. Numerical simulations were performed using
StochKit [29].

of transcriptional regulation in biology. In demarcating the range of system behaviors obtainable with
transcriptional regulation, our work provides insight into the types of regulation that natural biological
systems use for implementing specific functions.
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Figure 7. Implementation of the Lotka-Volterra oscillator by recasting the reciprocal of a transcription
factor as a variable of the target dynamical system. (a) Transcriptional network topology. (b)
Numerical simulation of the ideal Lotka-Volterra model (dashed line) and the Hill-function
transcriptional network from panel (c). (c) Transcriptional network model. Unlike in the previous
examples, both repression and activation is used, and the Hill-coefficient is 1. (d) Simplification of the
model in panel (c) using the following approximations. First, the order-1 activation Hill-function
X/kact

1+X/kact ≈ X/k
act when X is small compared to kact. Second, the order-1 repression Hill-function

1
1+X/krep ≈ k

rep/X when X is large compared with krep. (e) The differential equations in panel (d) are

exactly equivalent to the Lotka-Volterra system of equations with the substitution W1 = 1/X1. This
can be confirmed with the reciprocal rule of differentiation. A downstream transcriptional network can
use X1 as a repressor in an order-1 Hill function to “read-out” the reciprocal value W1. Parameters are:
maximum transcription rate α1 = 100 nM min−1, α2 = 20 nM min−1, binding constants kact = 50 nM,
krep = 0.1 nM, and degradation rate β = 0.015 min−1. The concentration range of transcription factors
was 0.2− 5 nM throughout.
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